• Title/Summary/Keyword: RANS해석

Search Result 222, Processing Time 0.035 seconds

Shape Optimization of a Rotating Cooling Channel with Pin-Fins (핀휜이 부착된 회전하는 냉각유로의 최적설계)

  • Moon, Mi-Ae;Husain, Afzal;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.703-714
    • /
    • 2010
  • This paper describes the design optimization of a rotating rectangular channel with staggered arrays of pin-fins by Kriging metamodeling technique. Two non-dimensional variables, the ratio of the height to the diameter of the pin-fins and the ratio of the spacing between the pin-fins to the diameter of the pin-fins are chosen as the design variables. The objective function that is a linear combination of heat transfer and friction loss related terms with a weighting factor is selected for the optimization. To construct the Kriging model, objective function values at 20 training points generated by Latin hypercube sampling are evaluated by a three-dimensional Reynolds-averaged Navier-Stokes (RANS) analysis method with the SST turbulence model. The Kriging model predicts the objective function value that agrees well with the value calculated by the RANS analysis at the optimum point. The objective function is reduced by 11% by the optimization of the channel.

A Two-Dimensional Numerical Analysis of the Unstart Process in an Inlet/Isolator Model (흡입구/격리부 모델의 Unstart 과정 2차원 수치 해석)

  • Shin, Hocheol;Park, Soohyung;Byun, Yunghwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.341-345
    • /
    • 2017
  • In this study, the Inlet/Isolator model experiments performed at Texas University were performed by 2-dimensional RANS computerized analysis. First, supersonic flow conditions were analyzed and compared with experimental surface pressure results, and the flow structure was analyzed by confirming Mach number distribution and numerical shadowgraph. Then, the inlet unstart condition was given by changing the back pressure, and the URANS analysis was performed to confirm the progress of inlet unstart.

  • PDF

Analysis of Solitary Wave through a Submerged Breakwater of Various Shape (다양한 형상의 수중방파제를 지나는 고립파의 해석)

  • Lee, Ha-Woo;Cho, Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.88-91
    • /
    • 2012
  • 본 연구에서는 다양한 형상의 수중방파제를 이용하여 고립파(지진해일)에 대한 파랑의 제어기능을 검토하였다. 먼저, 연구를 수행하기 위하여 Navier-Stokes 방정식에 기초한 RANS 모형을 사용하였다. RANS 모형에서는 VOF기법을 이용하여 자유수면을 해석하였고, 또한 조밀한 격자간격을 사용하여 수치실험을 실시하였다. 수중방파제의 형상에는 삼각형, 반타원형, 직사각형 및 사다리꼴형을 사용하여 각각의 수중방파제 위를 통과하는 고립파를 해석하였다. 고립파의 파고와 여러 가지 형태를 갖는 각각의 수중방파제의 높이를 조절하면서 수중방파제를 지나는 고립파의 투과율을 해석하였다.

  • PDF

Prediction of Pressure Fluctuations on Hammerhead Vehicle at Transonic Speeds Using CFD and Semi-empirical Formula Considering Spatial Distribution (CFD와 공간분포를 고려한 반경험식을 이용한 해머헤드 발사체의 천음속 압력섭동 예측)

  • Kim, Younghwa;Nam, Hyunjae;Kim, June Mo;Sun, Chul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.6
    • /
    • pp.457-464
    • /
    • 2021
  • To analyze the buffet phenomenon that causes serious vibration loads on a satellite launch vehicle, the pressure fluctuations on a hammerhead launch vehicle at transonic speeds are predicted by coupling CFD analysis and semi-empirical methods. From the RANS simulation, shock oscillation region, separation region, and separation reattachment region are identified, and the boundary layer thickness, the displacement thickness, and flow properties at boundary layer edge are calculated. The pressure fluctuations and power spectra on the hammerhead fairing are predicted by coupling RANS results and semi-empirical methods considering spatial distribution, and compared with the experimental data.

Unsteady RANS computations of turbulent flow in a high-amplitude meandering channel (고진폭 만곡수로에서 난류흐름의 비정상 RANS 수치모의)

  • Lee, Seungkyu;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.2
    • /
    • pp.89-97
    • /
    • 2017
  • Turbulent flow structure in the high amplitude meandering channel is complex due to secondary recirculation with helicoidal motions and shear layers formed by flow separation from the curved sidewall. In this work, the secondary flow and the superelevation of the water surface produced in the high-amplitude Kinoshita channel are reproduced by the unsteady Reynolds-averaged Navier-Stokes (RANS) computations using the VOF technique for resolving the variation of water surface elevation and three statistical turbulence models ($k-{\varepsilon}$, RNG $k-{\varepsilon}$, $k-{\omega}$ SST). The numerical results computed by a second-order accurate finite volume method are compared with an existing experimental measurement. Among applied turbulence models, $k-{\omega}$ SST model relatively well predicts overall distribution of the secondary recirculation in the Kinoshita channel, while all three models yield similar prediction of water superelevation transverse slope. The secondary recirculation driven by the radial acceleration in the upstream bend affects the flow structure in the downstream bend, which yields a pair of counter-rotating vortices at the bend apex. This complex flow pattern is reasonably well reproduced by the $k-{\omega}$ SST model. Both $k-{\varepsilon}$ based models fail to predict the clockwise-rotating vortex between a pair of counter-rotating vortices which was observed in the experiment. Regardless of applied turbulence models, the present computations using the VOF method appear to well reproduce the superelevation of water surface through the meandering channel.

Numerical Investigation of Nonpremixed Turbulent Flame of Cracked Kerosene in a Model Scramjet Combustor using Zonal Hybrid RANS/LES Method (Zonal Hybrid RANS/LES를 이용한 크랙된 케로신 스크램제트 연소기의 비예혼합 난류 연소 연구)

  • Shin, Junsu;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.304-309
    • /
    • 2017
  • This paper studies a nonpremixed turbulent flame in a model scramjet combustor using zonal hybrid RANS/LES method. The numerical domain is divided into two region, RANS and LES region. The interface between the two regions is treated with synthetic eddy method. A model scramjet combustor experimented at German aerospace center is selected for the comparative study. The fuel injection of cracked kerosene surrogate which is composed of ethylene and methane is considered. Turbulent combustion of cracked kerosene surrogate is achieved using flamelet approach.

  • PDF

On Numerical Modeling of Kerosene/Liquid Oxygen Coaxial Swirl Injectors (케로신/액체산소 동축 와류형 분사기에 대한 수치해석 모델 고찰)

  • Kim, Seong-Ku;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.729-732
    • /
    • 2010
  • The present study has been motivated by the development of a reliable numerical methodology for simulation of kerosene/LOx coaxial swirl injectors. To deal with thermodynamic non-ideality and anomalies of transport properties pronounced at supercritical pressures, a set of subroutine libraries has been constructed based on the cubic equations of state, and applied to an existing flamelet analysis code. For computational efficiency, two-dimensional axisymmetric RANS formulation with swirl was adopted and validated successfully against an isothermal coaxial swirling jet. For the actual problem with high pressure combustion, however, numerical results show that the RANS models yield excessive production of turbulence probably due to high density gradient magnitude in the vicinity of mixing layer of swirling film flow, and imply strongly further improvement of the turbulence models.

  • PDF

A multiphase flow modeling of gravity currents in a rectangular channel (사각형 수로에서 중력류의 다상흐름 수치모의)

  • Kim, Byungjoo;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.697-706
    • /
    • 2019
  • A multiphase flow modeling approach equipped with a hybrid turbulence modeling method is applied to compute the gravity currents in a rectangular channel. The present multiphase solver considers the dense fluid, the less-dense ambient fluid and the air above free surface as three phases with separate flow equations for each phase. The turbulent effect is simulated by the IDDES (improved delayed detach eddy simulation), a hybrid RANS/LES, approach which resolves the turbulent flow away from the wall in the LES mode and models the near wall flow in RANS mode on moderately fine computational meshes. The numerical results show that the present model can successfully reproduce the gravity currents in terms of the propagation speed of the current heads and the emergence of large-scale Kelvin-Helmholtz type interfacial billows and their three dimensional break down into smaller turbulent structures, even on the relatively coarse mesh for wall-modeled RANS computation with low-Reynolds number turbulence model. The present solutions reveal that the modeling approach can capture the large-scale three dimensional behaviors of gravity current head accompanied by the lobe-and-cleft instability at affordable computational resources, which is comparable to the LES results obtained on much fine meshes. It demonstrates that the multiphase modeling method using the hybrid turbulence model can be a promising engineering solver for predicting the physical behaviors of gravity currents in natural environmental configurations.

Numerical Flow Analysis of Propeller Type Pump (프로펠러식 펌프의 전산 유동 해석)

  • Yu, Hye-Ran;Park, Warn-Gyu
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.6 s.39
    • /
    • pp.29-34
    • /
    • 2006
  • Propeller type pump has been widely used for pumping water in agricultural and manufacturing industry. Since a propeller type pump contains a screw impeller inside a circular casing, the numerical analysis becomes complex. However, the accurate prediction of viscous flow is essential for computing hydrodynamic performances. To analysis the flow and the performance of the propeller type pump, the present work has solved 3D incompressible RANS equations on the multiblocked grid. From the present calculation, small amount of flow separation was shown near hub and the flow was recovered to nearly uniform inflow after one diameter downstream. Torque and thrust coefficient were computed and compared with experiments.