• Title/Summary/Keyword: RANGING

Search Result 7,256, Processing Time 0.031 seconds

Method for Robust Ground Ranging Using Monopulse Radar in Heterogeneous Clutter Environment (모노펄스 레이다를 이용한 비균질 클러터 환경에서의 강건한 지면거리측정 방법)

  • Son, Jegyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.602-609
    • /
    • 2021
  • Aircraft radar has special function which is ranging from aircraft to ground of antenna boresight. Because ranging information is used to calibrate altitude of aircraft or to drop a conventional bomb, the measuring have to be precise and robust. Therefore, we propose a simple and efficient method using monopulse radar for ground ranging. Proposed method calculates balancing weight according to linearity of monopulse ratio and mixes two ranging measurements in proportional to the weight. By exploiting balancing weight, radar is able to react to various environment as monopulse ratio contains characteristics of clutter environment. As a result, robust ranging information can be achieved. We use DEM(Digital Elevation Model) in order to simulate heterogeneous environment. In experimental result, it is shown that proposed method shows better accuracy and precision in any environment.

Handover Ranging Power Adjustment Using Uplink Channel Information in IEEE 802.16e/m

  • Kim, Ji-Su;Kim, Jae-Hyun
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.823-826
    • /
    • 2010
  • This letter proposes a handover ranging power adjustment scheme to improve handover performance. Incorrect ranging power can degrade handover performance due to the increased handover latency; therefore, the proposed scheme exploits the uplink channel information to adjust the uplink handover ranging power. Simulation results demonstrate that the proposed scheme reduces call outage probability by 33% compared to that of the conventional scheme. It also improves the number of users who satisfy the system requirements for handover interruption time.

A study on performance improvement of ultrasonic ranging system (초음파 거리계의 성능 개선에 관한 연구)

  • 박종건;임영철;조경영;박철수;김영민
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1209-1213
    • /
    • 1991
  • This paper describes a new method for performance improvement ultrasonic ranging system using V40 controller. Detectable range of ultrasonic ranging system depends on transducer frequency and bandwidth of the receiver, and damping of the transducer, etc. Conventional ranging systems are somewhat inaccurate because they do not have capability of compensating changes in medium condition. The novel ranging system overcomes this disadvantage by placing in the same medium a dummy sensor functioning as a standard calibrating instrument and by providing data processing capability using V40 controller.

  • PDF

Flight Performance of a Dual One-Way Carrier Phase Ranging Instrument (이중단방향 반송파 거리측정기 비행성능 분석)

  • Kim, Jeong-Rae
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.1
    • /
    • pp.52-57
    • /
    • 2009
  • One of the error sources for microwave ranging is the instability of the oscillator that drives the microwave signals. Dual one-way ranging (DOWR) minimizes the oscillator effect by combining two one-way carrier phase signals from two transmitter/receiver instrument. The DOWR is first implemented in the GRACE (Gravity Recovery and Climate Experiment) satellites. Direct evaluation of the DOWR is not possible due to its extremely high accuracy. The flight performance of the GRACE DOWR is analyzed by applying several indirect methods. Comparison with the design noise level is discussed.

  • PDF

Passive Ranging Based on Planar Homography in a Monocular Vision System

  • Wu, Xin-mei;Guan, Fang-li;Xu, Ai-jun
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.155-170
    • /
    • 2020
  • Passive ranging is a critical part of machine vision measurement. Most of passive ranging methods based on machine vision use binocular technology which need strict hardware conditions and lack of universality. To measure the distance of an object placed on horizontal plane, we present a passive ranging method based on monocular vision system by smartphone. Experimental results show that given the same abscissas, the ordinatesis of the image points linearly related to their actual imaging angles. According to this principle, we first establish a depth extraction model by assuming a linear function and substituting the actual imaging angles and ordinates of the special conjugate points into the linear function. The vertical distance of the target object to the optical axis is then calculated according to imaging principle of camera, and the passive ranging can be derived by depth and vertical distance to the optical axis of target object. Experimental results show that ranging by this method has a higher accuracy compare with others based on binocular vision system. The mean relative error of the depth measurement is 0.937% when the distance is within 3 m. When it is 3-10 m, the mean relative error is 1.71%. Compared with other methods based on monocular vision system, the method does not need to calibrate before ranging and avoids the error caused by data fitting.

Single Outlier Removal Technology for TWR based High Precision Localization (TWR 기반 고정밀 측위를 위한 단일 이상측정치 제거 기술)

  • Lee, Chang-Eun;Sung, Tae-Kyung
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.350-355
    • /
    • 2017
  • UWB (Ultra Wide Band) refers to a system with a bandwidth of over 500 MHz or a bandwidth of 20% of the center frequency. It is robust against channel fading and has a wide signal bandwidth. Using the IR-UWB based ranging system, it is possible to obtain decimeter-level ranging accuracy. Furthermore, IR-UWB system enables acquisition over glass or cement with high resolution. In recent years, IR-UWB-based ranging chipsets have become cheap and popular, and it has become possible to implement positioning systems of several tens of centimeters. The system can be configured as one-way ranging (OWR) positioning system for fast ranging and TWR (two-way ranging) positioning system for cheap and robust ranging. On the other hand, the ranging based positioning system has a limitation on the number of terminals for localization because it takes time to perform a communication procedure to perform ranging. To overcome this problem, code multiplexing and channel multiplexing are performed. However, errors occur in measurement due to interference between channels and code, multipath, and so on. The measurement filtering is used to reduce the measurement error, but more fundamentally, techniques for removing these measurements should be studied. First, the TWR based positioning was analyzed from a stochastic point of view and the effects of outlier measurements were summarized. The positioning algorithm for analytically identifying and removing single outlier is summarized and extended to three dimensions. Through the simulation, we have verified the algorithm to detect and remove single outliers.

Design and Development of High-Repetition-Rate Satellite Laser Ranging System

  • Choi, Eun-Jung;Bang, Seong-Cheol;Sung, Ki-Pyoung;Lim, Hyung-Chul;Jung, Chan-Gyu;Kim, In-Yeung;Choi, Jae-Seung
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.209-219
    • /
    • 2015
  • The Accurate Ranging System for Geodetic Observation - Mobile (ARGO-M) was successfully developed as the first Korean mobile Satellite Laser Ranging (SLR) system in 2012, and has joined in the International Laser Ranging Service (ILRS) tracking network, DAEdeoK (DAEK) station. The DAEK SLR station was approved as a validated station in April 2014, through the ILRS station "data validation" process. The ARGO-M system is designed to enable 2 kHz laser ranging with millimeter-level precision for geodetic, remote sensing, navigation, and experimental satellites equipped with Laser Retro-reflector Arrays (LRAs). In this paper, we present the design and development of a next generation high-repetition-rate SLR system for ARGO-M. The laser ranging rate up to 10 kHz is becoming an important issue in the SLR community to improve ranging precision. To implement high-repetition-rate SLR system, the High-repetition-rate SLR operation system (HSLR-10) was designed and developed using ARGO-M Range Gate Generator (A-RGG), so as to enable laser ranging from 50 Hz to 10 kHz. HSLR-10 includes both hardware controlling software and data post-processing software. This paper shows the design and development of key technologies of high-repetition-rate SLR system. The developed system was tested successfully at DAEK station and then moved to Sejong station, a new Korean SLR station, on July 1, 2015. HSLR-10 will begin normal operations at Sejong station in the near future.

Development of Operation System for Satellite Laser Ranging on Geochang Station (거창 인공위성 레이저 추적을 위한 운영 시스템 개발)

  • Ki-Pyoung Sung;Hyung-Chul Lim;Man-Soo Choi;Sung-Yeol Yu
    • Journal of Space Technology and Applications
    • /
    • v.4 no.2
    • /
    • pp.169-183
    • /
    • 2024
  • Korea Astronomy and Space Science Institute (KASI) developed the Geochang satellite laser ranging (SLR) system for the scientific research on the space geodesy as well as for the national space missions including precise orbit determination and space surveillance. The operation system was developed based on the server-client communication structure, which controls the SLR subsystems, provides manual and automatic observation modes based on the observation algorithm, generates the range data between satellites and SLR stations, and carry out the post-processing to remove noises. In this study, we analyzed the requirements of operation system, and presented the development environments, the software structure and the observation algorithm, for the server-client communications. We also obtained laser ranging data for the ground target and the space geodetic satellite, and then analyzed the ranging precision between the Geochang SLR station and the International Laser Ranging Service (ILRS) network stations, in order to verify the operation system.

Environment-Based Ranging Error Correction Technique Using IEEE 802.15.4a CSS PHY (IEEE 802.15.4a CSS PHY를 이용한 환경기반 거리측정오차 보정 기법)

  • Nam, Min-Seok;Park, Young-Kyun;Nam, Young Jin;Lee, Dong-Ha;Kang, Jin-Kyu;Lee, Sang-Cheol
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.4 no.4
    • /
    • pp.148-155
    • /
    • 2009
  • Precise localization heavily relies on the accuracy of its underlying ranging technique. It has been known that the Chirp Spread Spectrum (CSS) defined in the IEEE 802.15.4a provides more dependable ranging accuracy than the Received Signal Strength Indicator (RSSI) in the IEEE 802.15.4. This paper examines the accuracy of the CSS-based ranging technique in the indoor/outdoor environments and discovers its consistent inaccuracy in different environments. Next, it proposes an error-correction architecture for the CSS-based ranging technique that exploits the per-environment consistent inaccuracy information and user visiting patterns (represented by weights for each environment).

  • PDF

Wirelessly Synchronized One-Way Ranging Algorithm with Active Mobile Nodes

  • Nam, Yoon-Seok;Kang, Bub-Joo;Huh, Jae-Doo;Park, Kwang-Roh
    • ETRI Journal
    • /
    • v.31 no.4
    • /
    • pp.466-468
    • /
    • 2009
  • In this letter, we propose a one-way ranging algorithm that is based on wireless synchronization with measured timestamps and clock frequency offsets. In our proposed algorithm, an active mobile node initiates a ranging procedure by transmitting a ranging frame, and the anchor nodes report their timestamps for the received ranging frame to a reference anchor node. The synchronization of a pair of nodes is provided with instantaneous time information, and the corresponding difference of distances can be calculated.