• Title/Summary/Keyword: RAIDD

Search Result 2, Processing Time 0.015 seconds

PIDD mediates and stabilizes the interaction between RAIDD and Caspase-2 for the PIDDosome assembly

  • Jang, Tae-Ho;Park, Hyun Ho
    • BMB Reports
    • /
    • v.46 no.9
    • /
    • pp.471-476
    • /
    • 2013
  • The PIDDosome, which is an oligomeric signaling complex composed of PIDD, RAIDD and caspase-2, can induce proximity-based dimerization and activation of caspase-2. In the PIDDosome assembly, the adaptor protein RAIDD interacts with PIDD and caspase-2 via CARD:CARD and DD:DD, respectively. To analyze the PIDDosome assembly, we purified all of the DD superfamily members and performed biochemical analyses. The results revealed that caspase-2 CARD is an insoluble protein that can be solubilized by its binding partner, RAIDD CARD, but not by full-length RAIDD; this indicates that full-length RAIDD in closed states cannot interact with caspase-2 CARD. Moreover, we found that caspase-2 CARD can be solubilized and interact with full-length RAIDD in the presence of PIDD DD, indicating that PIDD DD initially binds to RAIDD, after which caspase-2 can be recruited to RAIDD via a CARD:CARD interaction. Our study will be useful in determining the order of assembly of the PIDDosome.

The Effects of Injinchunggan-tang(Yinchenqinggan-tang) on $TNF-\alpha$ signal transmission system in HepG2 cell (인진청간탕(茵蔯淸肝湯)이 HepG2 cell의 $TNF-\alpha$ 신호전달계에 미치는 영향(影響))

  • Kang Woo-Sung;Kim Young-Chul;Lee Jang-Hoon;Woo Hong-Jung
    • The Journal of Internal Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.28-45
    • /
    • 2004
  • Objectives : The main purpose of this study is to evaluate the effect of Injinchunggan-tang on $TNF-{\alpha}$ signal transmission system. Materials and Methods : We analyzed the following with quantitative RT-PCR method; the effect of Injinchunggan-tang on secretion of $TNF-\alpha$ mRNA/protein and stability, the effect on gene revelation that consists of signal transmission system (TRAIL, NIK, A20, TRADD, RAIDD, RIP TNFR-I, TNFR-II, TRAF1, TRAF2, FADD), the one on activation of p38, Erk1/2 MAPK and the rate of nuclear $NF-{\kappa}B/cytosolic\;NF-{\kappa}B$ in HepG2 cell. We also analyzed the inhibitory effect of Injinchunggan-tang on the apoptosis of HepG2 cell that $TNF-{\alpha}$ induces and the $NF-{\kappa}B$ restraint effected by transfection of $I{\kappa}B{\Delta}N$ through tryphan blue exclusion assay. Results : Injinchunggan-tang prohibits revelation of $TNF-{\alpha}$ mRNA in HepG2 cell and the creation of protein. However, it has no effect on the stability of $TNF-{\alpha}$ mRNA. While it did not have any effect on the generation of TRAIL, NIK, A20, TRADD, RAIDD and RIP genes, Injinchunggan-tang reduces the revelation of TNFR-I, TNFR-II, TRAF1, TRAF2 and FADD genes. It has been confirmed that Injinchunggan-tang restraints the revelation of $TNF-{\alpha}$ mRNA that is promoted by ethanol, acetaldehyde, lipopolysaccharide, in proportion to the treatment density and time. It activated $NF-{\kappa}B$ of HepG2 cell and promoted activation of $NF-{\kappa}B$ that is occurred by $TNF-{\alpha}$. It has been observed that the restraint effect against the $TNF-{\alpha}$ inducing apoptosis is lost when it is intercepted the function of $NF-{\kappa}B$ in HepG2 cell. Conclusion: It has been confirmed that Injinchunggan-tang has restraining effect against the revelation of $TNF-{\alpha}$ and mRNA that is constituent element of TNF-a signal transmission system. It also has been revealed that it restraints the activation of p38, Erk1/2 by $TNF-{\alpha}$. Through this prohibiting effect, it is inferred that it restraints signal transmission among various cells that are related to inflammation reaction. Meanwhile, Injinchunggan-tang protects liver cell from apoptosis that is caused by $TNF-{\alpha}$, by maintaining the activating function for $NF-{\kappa}B$.

  • PDF