• Title/Summary/Keyword: RAFT agent

Search Result 7, Processing Time 0.023 seconds

Ab Initio Dispersion Polymerization of Styrene in the Presence of the Poly(methacrylic acid) Macro-RAFT Agent

  • Wi, Yeon-Hwa;Lee, Kang-Seok;Lee, Byung-Hyung;Choe, Soon-Ja
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.750-756
    • /
    • 2009
  • Stable, spherical, polystyrene particles were synthesized in ab initio dispersion polymerization by using the poly(methacrylic acid)[PMAA] macro-RAFT agent. The presence of the PMAA macro-RAFT agent on the polystyrene (PS) particles was confirmed by NMR and FTIR spectroscopy. The PS particle size was influenced by the concentration of the RAFT agent and monomer due to the initial nucleation. When the concentration of the PMAA macro-RAFT agent was increased from 2 to 10 wt% relative to the monomer, the average particle size decreased from 2.31 to 1.36 ${\mu}m$, the conversion decreased from 93.3 to 88.9%, the weight-average molecular weight increased from 46,300 to 150,200 g $mol^{-1}$ and the PDI decreased from 2.79 to 1.94, respectively. In particular, the incorporation of 10 wt% of PMAA macro-RAFT agent produced monodisperse PS spheres of 1.36 ${\mu}m$ with a coefficient of variation (CV) of 6.44%. Thus, the PMAA macro-RAFT agent worked as a reactive steric stabilizer providing monodisperse, micron-sized, PS particles.

Dithioester 와 xanthate agent 가 매개된 RAFT 중합반응에서 Z 치환기의 변화로 인한 안정성 효과에 대한 연구

  • Baek, U-Hyeon;Sin, Chae-Su;Sin, Seok-Min
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.23-31
    • /
    • 2016
  • 자유 라디칼을 이용한 RAFT 중합은 성장하는 고분자 반응을 제어할 수 있는 특성이 있어 주목 받고 있는 고분자 합성방법 중 하나이다. 이 반응의 기작은 agent라 불리는 분자를 주축으로 삼아 단량체들을 단계적으로 성장하는 가역적 방법으로 원하지 않는 종결반응으로부터 고분자 라디칼을 보호하는 역할을 수행한다. 보호의 근본적인 원인은 중간체 상태에서의 안정화 정도와 관련이 있으나 안정해진 만큼 반응속도가 느려지는 지연효과가 발생한다. 지연효과를 유도하는 원인은 많은 논란이 있었으며 그 중 하나로 agent에 존재하는 Z 치환기의 영향을 원인으로 지목하고 있다. 본 연구는 Z 치환기의 변화에 따른 안정화 정도를 파악하기 위하여 RAFT agent로 주로 이용하는 것 중 두 개의 황이 있는 dithioester와 xanthate를 WxMacMolplt 7.3.2를 이용하여 propagation 초기 단계를 구현한 후 GAMESS2 프로그램을 이용하여 양자화학적 계산을 수행하였다. 계산결과 안정화 에너지와 경계 궤도함수에서는 phenyl기가 있을 때 공명효과에 의하여 안정화가 이루어졌으며 또한 propyl benzyl에서도 늘어난 알킬 사슬의 donating effect로 인한 안정화 영향의 범위를 발견하였다. PES 기법을 통해 두 methyl 단량체를 움직이면서 반응하는 동안의 에너지 변화를 알아보았으며 그 결과 dithioester는 Z 치환기의 변화에 더 많이 의존한다는 것을 확인하였다. 본 연구를 종합해본 결과 phenyl을 제외한 aryl기가 있는 dithioester는 낮은 addition 퍼텐셜과 안정화 에너지를 가질 수 있을 것이고 지연효과를 줄일 수 있을 것으로 기대된다.

  • PDF

Reversible Addition-Fragmentation Chain Transfer (RAFT) Bulk Polymerization of Styrene: Effect of R-Group Structures of Carboxyl Acid Group Functionalized RAFT Agents

  • Lee Jung Min;Kim Ok Hyung;Shim Sang Eun;Lee Byung H.;Choe Soonja
    • Macromolecular Research
    • /
    • v.13 no.3
    • /
    • pp.236-242
    • /
    • 2005
  • Three dithioester-derived carboxyl acid functionalized RAFT(reversible addition-fragmentation chain transfer) agents, viz. acetic acid dithiobenzoate, butanoic acid dithiobenzoate and 4-toluic acid dithiobenzoate, were used in the RAFT bulk polymerization of styrene, in order to study the effects of the R-group structure on the living nature of the polymerization. By conducting the polymerization with various concentrations of the RAFT agents and at different temperatures, it was found that the R-group structure of the RAFT agents plays an important role in the RAFT polymerization; the bulky structure and radical stabilizing property of the R-group enhances the living nature of the polymerization and allows the polymerization characteristics to be well controlled.

From the synthesis of functional RAFT agents to the design of functional latex particles

  • Bathfield M.;D'Agosto F.;Spitz R.;Charreyre M.T.;Delair T.;Dos Santos A.M.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.319-319
    • /
    • 2006
  • RAFT polymerization can produce under controlled conditions polymer chains incorporating well-defined chain ends. By designing a simple way of producing functional RAFT agents, a variety of ${\Box}-end$ groups was successfully introduced onto hydrophilic polymer chains. The ${\Box}-end$ group being a thiocarbonyl thio function was used as efficient chain transfer agent in dispersion or emulsion polymerization to produce original functional latex particles.

  • PDF

Leukotriene Synthesis in Response to A23187 Is Inhibited by Methyl-β-Cyclodextrin in RBL-2H3 Cells

  • You, Hye Jin;Seo, Ji-Min;Moon, Ji-Young;Han, Sung-Sik;Ko, Young-Gyu;Kim, Jae-Hong
    • Molecules and Cells
    • /
    • v.23 no.1
    • /
    • pp.57-63
    • /
    • 2007
  • Leukotrienes (LTs) are produced by several biosynthetic enzymes including cytosolic phospholipase $A_2$ ($cPLA_2$), 5-lipoxygenase (5-LO), and 5-lipoxygenase activating protein (FLAP) in the perinuclear area. In the present study, we showed that pretreatment with methyl-${\beta}$-cyclodextrin (MβCD), a cholesterol-depleting agent, dramatically reduced the synthesis of LTs in response to A23187 in mast cells. A23187-induced LT synthesis was inhibited by pretreatment with M${\beta}$CD, and this effect was reversed when cholesterol was added. In an approach to identifying the $M{\beta}CD$-sensitive protein(s), we observed that FLAP co-localized with flotillin-1, a lipid raft marker protein, in the lipid raft-rich low-density region of sucrose gradients. In addition, electron microscopic analysis revealed that FLAP co-localized with flotillin-1. Together, these results suggest that FLAP is present in cholesterol-rich lipid raft-like domains and that its localization in these domains is critical for LT synthesis.

Xanthate-Mediated Controlled Radical Polymerizations of N-Vinylcarbazole and Synthesis of Star Polymers

  • Mori, Hideharu;Ookuma, Hiroshi;Endo, Takeshi
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.322-322
    • /
    • 2006
  • Well-defined poly(N-vinylcarbazole), poly(NVC), was synthesized by macromolecular design via interchange of the xanthate (MADIX)/reversible addition-fragmentation chain transfer (RAFT) polymerization in the presence of a suitable xanthate-type chain transfer agent (CTA). Good control of the polymerization was confirmed by the linear first-order kinetic plot, the molecular weight controlled by the monomer/CTA molar ratio, linear increase in the molecular weight with the conversion, and the ability to extend the chains by the second addition of the monomer. Star polymers having various architectures were also synthesized using this technique.

  • PDF

The Immunosuppressive Potential of Cholesterol Sulfate Through T Cell Microvilli Disruption

  • Jeong-Su Park;Ik-Joo Chung;Hye-Ran Kim;Chang-Duk Jun
    • IMMUNE NETWORK
    • /
    • v.23 no.3
    • /
    • pp.29.1-29.23
    • /
    • 2023
  • Cholesterol (CL) is required for various biomolecular production processes, including those of cell membrane components. Therefore, to meet these needs, CL is converted into various derivatives. Among these derivatives is cholesterol sulfate (CS), a naturally produced CL derivative by the sulfotransferase family 2B1 (SULT2B1), which is widely present in human plasma. CS is involved in cell membrane stabilization, blood clotting, keratinocyte differentiation, and TCR nanocluster deformation. This study shows that treatment of T cells with CS resulted in the decreased surface expression of some surface T-cell proteins and reduced IL-2 release. Furthermore, T cells treated with CS significantly reduced lipid raft contents and membrane CLs. Surprisingly, using the electron microscope, we also observed that CS led to the disruption of T-cell microvilli, releasing small microvilli particles containing TCRs and other microvillar proteins. However, in vivo, T cells with CS showed aberrant migration to high endothelial venules and limited infiltrating splenic T-cell zones compared with the untreated T cells. Additionally, we observed significant alleviation of atopic dermatitis in mice injected with CS in the animal model. Based on these results, we conclude that CS is an immunosuppressive natural lipid that impairs TCR signaling by disrupting microvillar function in T cells, suggesting its usefulness as a therapeutic agent for alleviating T-cell-mediated hypersensitivity and a potential target for treating autoimmune diseases.