• Title/Summary/Keyword: RADIUS

Search Result 4,942, Processing Time 0.043 seconds

Ammonium Nitrate Explosion Technique for the Establishment of Orchard (산지과수(山地果樹)의 재식(栽植)을 위(爲)한 폭약이용(爆藥利用)에 관(關)한 연구(硏究))

  • Yoo, S.H.;Koh, K.C.;Park, M.E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.12 no.4
    • /
    • pp.169-178
    • /
    • 1980
  • Ammonium nitrate explosion technique was applied to seek a convenient method for the establishment of orchard on the undulating to rolling land or hill side of Pogog clay loam soil (Fine Aquic Fragiudalfs : Planosols) having high bulk density and low permeability. Explosions were made by three ammonium nitrate explosives placed in the bottom of 90cm deep auger hole with every 2m interval (Explosion I) and 4m interval (Explosion II) respectively. The effect of the explosion on physical properties of the soil was investigated and compared with the effect induced by manual digging, excavation of $1m{\times}1m$ in diameter and depth (Manual digging I) and trenching of $1m{\times}1m{\times}25m$ in width, depth, and length (Manual digging II) respectively. The results investigated after 7 months from the treatments are summarized as follows : 1. The explosion or manual digging reduced bulk density and hardness, whereas the treatments increased porosity, hydraulic conductivity, and available moisture-holding capacity of the soil. 2. The explosion of 4 m interval improved physical properties of the soil to optimum level up to 70cm of the distance from the explosion core in the range of depth 0-60cm, while in the case of depth from 60 to 100cm the optimum level was achieved only within 50cm radius. 3. When exploded in 2 m interval, the effect in the 0-60cm depth was overlapped between two explosion cores. The effect in the depth between 60 and 100cm, however, was found to be independent of the explosion intervals. 4. The manual digging was only costly and laborious but effective only within the work-up zone. 5. For the soils having bulk density higher than $1.4g/cm^3$ after the treatments, the field capacity determined 72 hours after a heavy rain was lower than the laboratory estimate at the suction of 1/3 atm. 6. The top growth of apple tree for the first year revealed that the explosion seemed better treatment than the manual digging, even though the difference was insignificant.

  • PDF

Reproductive Ecology of the Bladder Moon, Glossaulax didyma (Gastropoda: Naticidae) in Western Korea (한국 서해산 큰구슬우렁이, Glossaulax didyma (복족강: 구슬우렁이과) 의 번식생태)

  • Kim, Dae-Gi;Chung, Ee-Young;Shin, Moon-Seup;Hwang, Kyu
    • The Korean Journal of Malacology
    • /
    • v.23 no.2
    • /
    • pp.189-198
    • /
    • 2007
  • The reproductive cycle, egg capsules in the egg-mass, first sexual maturity, and sex ratio of the bladder moon, Glossaulax didyma ($R\ddot{o}ding$) were investigated. The gastropods collected from the intertidal zone of Biin Bay, Seocheon, Korea were studied by using histological analysis and morphometric data. The gonadosomatic index (GSI) of females and males began to increase in March and reached maximum in May. Then their values sharply decreased from late in May to August due to spawning. The condition index (CI) began to increase in February and reached maximum in May, then gradually declined in the spawning period. The CI calculated for determination of the spawning period was coincided with changes in the GSI and gonadal phases. Spawning occurred between late in May to August in females and early in May to August in males. Spawning peak was observed between July and August when the seawater temperature rose to 19 $^{\circ}C$. Reproductive cycle with the gonadal development phases of this species can be divided into five successive stages in females and four in males: in females, early active stage (December to February), late active stage (February to March), ripe stage (April recovery stage (August to November); in males, active stage (December to March), ripe stage (March to July), copulation stage (early May to August), and recovery stage (August to January). Fully matured oocytes were approximately 250-270 ${\mu}m$ in size. The egg-mass was a hat in shape, and a number of egg capsules were found in an egg-mass. An egg capsule was 0.53-0.57 mm in size. An embryo (veliger larva) hatched from an egg capsule. Percentage of first sexual maturity in females and males were over 50% for individuals that are 40.1-45.0 mm in shell radius, and 100% for those that are over 45.1 mm. The sex ratio of female to male was significantly different from 1:1 $(x^2\;=\;57.22,\;p\;<\;0.05)$.

  • PDF

Development of Geometric Calibration Method for Triple Head Pinhole SPECT System (삼중헤드 SPECT에서 기하학적 보정 기법의 개발)

  • Kim, Joong-Hyun;Lee, Jae-Sung;Lee, Won-Woo;Park, So-Yeon;Son, Ji-Yeon;Kim, Yu-Kyeong;Kim, Sang-Eun;Lee, Dong-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.1
    • /
    • pp.61-69
    • /
    • 2008
  • Purpose: Micro-pinhole SPECT system with conventional multiple-head gamma cameras has the advantage of high magnification factor for imaging of rodents. However, several geometric factors should be calibrated to obtain the SPECT image with good image quality. We developed a simplified geometric calibration method for rotating triple-head pinhole SPECT system and assessed the effects of the calibration using several phantom and rodent imaging studies. Materials and Methods: Trionix Triad XLT9 triple-head SPECT scanner with 1.0 mm pinhole apertures were used for the experiments. Approximately centered point source was scanned to track the angle-dependent positioning errors. The centroid of point source was determined by the center of mass calculation. Axially departed two point sources were scanned to calibrate radius of rotation from pinhole to center of rotation. To verify the improvements by the geometric calibration, we compared the spatial resolution of the reconstructed image of Tc-99m point source with and without the calibration. SPECT image of micro performance phantom with hot rod inserts was acquired and several animal imaging studies were performed. Results: Exact sphere shape of the point source was obtained by applying the calibration and axial resolution was improved. Lesion detectibility and image quality was also much improved by the calibration in the phantom and animal studies. Conclusion: Serious degradation of micro-pinhole SPECT images due to the geometric errors could be corrected using a simplified calibration method using only one or two point sources.

Analysis on the source characteristics of three earthquakes nearby the Gyeongju area of the South Korea in 1999 (1999년 경주 인근에서 3차례 발생한 지진들의 지진원 특성 분석)

  • Choi, Ho-Seon;Shim, Taek-Mo
    • The Journal of Engineering Geology
    • /
    • v.19 no.4
    • /
    • pp.509-515
    • /
    • 2009
  • Three earthquakes with local magnitude ($M_L$) greater than 3.0 occurred on April 24, June 2 and September 12 in 1999 nearby the Gyeongju area. Redetermined epicenters were located within the radius of 1 km. We carried out waveform inversion analysis to estimate focal mechanism of June 2 event, and P and S wave polarity and their amplitude ratio analysis to estimate focal mechanisms of April 24 and September 12 events. June 2 and September 12 events had similar fault plane solutions each other. The fault plane solution of April 24 event included those of other 2 events, but its distribution range was relatively broad. Focal mechanisms of those events had a strike slip faulting with a small normal component. P-axes of those events were ENE-WSW which were similar to previous studies on the P-axis of the Korean Peninsula. Considering distances between epicenters, similarities of seismic waves and sameness of polarities of seismic data recorded at common seismic stations, these events might occurred at the same fault. The seismic moment of June 2 event was estimated to be $3.9\;{\times}\;10^{14}\;N{\cdot}m$ and this value corresponded to the moment magnitude ($M_W$) 3.7. The moment magnitude estimated by spectral analysis was 3.8, which was similar to that estimated by waveform inversion analysis. The average stress drop was estimated to be 7.5 MPa. Moment magnitudes of April 24 and September 12 events were estimated to be 3.2 and 3.4 by comparing the spectrum of those events recorded at common single seismic station.

Crystalline lens'curvature change model by Accommdation (조절력에 따른 Crystalline Lens의 곡률 변화 모델)

  • Park, Kwang-Ho;Kim, Yong-Geun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.2
    • /
    • pp.181-187
    • /
    • 2002
  • Curvature of Crystalline lens changes by Accommdation's change. When Accommdation gives force vertically to Crystalline lens that is elastic body, length increases for vertex direction. Density distribution and form of Crystalline lens that receive force lean to posterior surface, horizontal force of anterior surface direction is bigger more than horizontal force of posterior surface direction. But, if Accommdation begins to grow more than threshold value, expansity reaches in limit on anterior surface. This time, horizontal force of posterior surface direction is great mored more than horizontal force of anterior surface direction, thickness of posterior surface direction increases because is more than anterior surface direction. Anterior and posterior relationship thickness change difference accomplish the 2-nd funtional line(${\Delta}=B_1D+B_2D^2$) about Accommdation. Thickness (${\Delta}t_a$, ${\Delta}t_p$) difference change curved line of anterior pole-border and border-posterior pole by Accommdation is expressed as following. $${\Delta}t_a=t_a-t_{ao}=t_{max}+t_0{\exp}(-A/B)-t_{ao}$$ $${\Delta}t_p=t_p-t_{po}=t_{min}+t_0{\exp}(A/B)-t_{po}$$ The Parameter value that save in human's Crystalline lens obtain $t_{min}=1.1.06$, $t_0=-0.33$, B=9.32 in anterior, and $t_{max}=1.97$, $t_0=0.10$, B=7.96 etc. in posterior. Vertex curvature radius' change is as following Crystalline lens' anterior and posterior by Accommation $$R=R_0+R_1{\exp}(D/k)$$ The Parameter value that save in human's Crystalline lens obtain $R_{min}=5.55$, $R_1=6.87$, k=4.65 in anterior, and $R_{max}=-68.6$, $R_1=76.7$, k=308.5 in posterior, respectively.

  • PDF

Measurement of Porcine Aortic and Pulmonary Valve Geometry and Design for Implantable Tissue Valve (돼지 대동맥, 폐동맥의 근위부 기하학적 구조 측정을 통한 판막 구조 수치의 계량화와 판막 도안에 관한 연구)

  • Park, Sung-Joon;Kim, Yong-Jin;Nam, Jin-Hae;Kim, Soo-Hwan;Lee, Chang-Ha;Lim, Hong-Gook
    • Journal of Chest Surgery
    • /
    • v.43 no.6
    • /
    • pp.602-613
    • /
    • 2010
  • Background: As life expectancy has been increased, the cardiac valve disease has been increased. In past, mechanical valve for valve replacement surgery was used widely, but it has many weaknesses, such as hemorrhage, teratogenic effect caused by warfarin, acute mechanical failure, taking warfarin during life, etc. So, the tissue valve is used widely and researches for durability of tissue valve are in progress. Tissue valves being used are all imported in Korea, and there is a lack of information on its geometry and design. So, we studied the geometry of porcine aortic and pulmonary valve, and tried to suggest theoretical basis for making the aortic and pulmonary valve. Material and Method: We harvested aortic and pulmonary valves of 25 pigs and measured the geometry of valve at fresh and glutaraldehyde (GA) fixed state. In each group, we measured the diameter of the base, diameter of commissure, valve height, commissural height, etc. Also, for making implantable porcine and bovine pericardial valve, we designed the valve stent form, thickness, height, and leaflet size, form, thickness by different size of valve. Result: The aortic and pulmonary valve geometry and ratio were measured in each group. The right coronary cusp of aortic valve and right facing cusp of pulmonary valve was bigger than other cusps and non coronary cusp was smaller than others (RCC: NCC : LCC=1 : 0.88 : 1). Valve height was correlated to the leaflet size. We designed the outer diameter of stented porcine aortic valve from 19 mm to 33 mm and designed stent height and width, using previous measured ratio of each structure, stent thickness, working thickness (for making valve). Also, we designed the size of stent and form for stented bovine pericardial valve, considering diameter of valve, leaflet length, height and leaflet minimum coaptation area. Conclusion: By measuring of 25 pig's aortic and pulmonary valve geometry and ratio, we can make theoretical basis for making implantable stented porcine valve and bovine pericardial valve in various size. After making implantable valve using these data, it is necessary to do in vivo and in vitro researches, furthermore.

Evaluation of the CO2 Storage Capacity by the Measurement of the scCO2 Displacement Efficiency for the Sandstone and the Conglomerate in Janggi Basin (장기분지 사암과 역암 공극 내 초임계 이산화탄소 대체저장효율 측정에 의한 이산화탄소 저장성능 평가)

  • Kim, Seyoon;Kim, Jungtaek;Lee, Minhee;Wang, Sookyun
    • Economic and Environmental Geology
    • /
    • v.49 no.6
    • /
    • pp.469-477
    • /
    • 2016
  • To evaluate the $CO_2$ storage capacity for the reservoir rock, the laboratory scale technique to measure the amount of $scCO_2$, replacing pore water of the reservior rock after the $CO_2$ injection was developed in this study. Laboratory experiments were performed to measure the $scCO_2$ displacement efficiency of the conglomerate and the sandstone in Janggi basin, which are classified as available $CO_2$ storage rocks in Korea. The high pressurized stainless steel cell containing two different walls was designed and undisturbed rock cores acquired from the deep drilling site around Janggi basin were used for the experiments. From the lab experiments, the average $scCO_2$ displacement efficiency of the conglomerate and the sandstone in Janggi basin was measured at 31.2% and 14.4%, respectively, which can be used to evaluate the feasibility of the Janggi basin as a $scCO_2$ storage site in Korea. Assuming that the effective radius of the $CO_2$ storage formations is 250 m and the average thickness of the conglomerate and the sandstone formation under 800 m in depth is 50 m each (from data of the drilling profile and the geophysical survey), the $scCO_2$ storage capacity of the reservoir rocks around the probable $scCO_2$ injection site in Janggi basin was calculated at 264,592 metric ton, demonstrating that the conglomerate and the sandstone formations in Janggi basin have a great potential for use as a pilot scale test site for the $CO_2$ storage in Korea.

A Longitudinal Study on the Skeletal Maturity of the Hand and Wrist among Various Malocclusion Groups(I) (부정교합자의 수완부 골성숙도에 관한 누년적 연구(I))

  • Kim, Kyung-Ho
    • The korean journal of orthodontics
    • /
    • v.29 no.2 s.73
    • /
    • pp.183-195
    • /
    • 1999
  • Growth and development evaluation of patients with growth potential is of great importance for orthodontic treatment planning. Timing of orthodontic intervention greatly depends on one's developmental status, thus if there is a difference in skeletal maturation among malocclusion types different treatment timing should be applied. The objective of this study was to evaluate and compare skeletal maturation among different malocclusion types. The samples used in this study was 38 Class I, 36 Class II and 33 ClassIII females aging from 8 to 10 years. Handwrist X-rays were taken with 6 month interval till 12-13 years of age. The results were as follows. 1. There was no skeletal maturity difference among different malocclusion types. 2. The hamular process of hamate was observed at $9.16{\pm}0.72$ years, pisiform bone at $9.13{\pm}0.71$ years and the ulnar sesamoid at $10.34{\pm}0.84$ years. 3. The timing of epiphyseal capping on the third finger was $10.96{\pm}0.80$ years for distal phalanx and $11.27{\pm}0.87$ years for middle phalanx, $11.12{\pm}0.85$ years for proximal phalanx of the first finger, $11.21{\pm}0.82$ years for radius and $11.62{\pm}0.85$ years for middle phalanx of the fifth finger. 4. The appearance of pisiform bone showed high correlation with appearance of hamular process of hamate(r=0.91) and ulnar sesamoid bone appearance showed high correlation with advanced ossification of hamular process(r=0.86). Timing of epiphyseal capping among different parts showed high correlation(r=0.80-0.90). 5. The shape of middle phalanx of the fifth finger showed the highest variability ($20.6\%$).

  • PDF

Manganese and Iron Interaction: a Mechanism of Manganese-Induced Parkinsonism

  • Zheng, Wei
    • Proceedings of the Korea Environmental Mutagen Society Conference
    • /
    • 2003.10a
    • /
    • pp.34-63
    • /
    • 2003
  • Occupational and environmental exposure to manganese continue to represent a realistic public health problem in both developed and developing countries. Increased utility of MMT as a replacement for lead in gasoline creates a new source of environmental exposure to manganese. It is, therefore, imperative that further attention be directed at molecular neurotoxicology of manganese. A Need for a more complete understanding of manganese functions both in health and disease, and for a better defined role of manganese in iron metabolism is well substantiated. The in-depth studies in this area should provide novel information on the potential public health risk associated with manganese exposure. It will also explore novel mechanism(s) of manganese-induced neurotoxicity from the angle of Mn-Fe interaction at both systemic and cellular levels. More importantly, the result of these studies will offer clues to the etiology of IPD and its associated abnormal iron and energy metabolism. To achieve these goals, however, a number of outstanding questions remain to be resolved. First, one must understand what species of manganese in the biological matrices plays critical role in the induction of neurotoxicity, Mn(II) or Mn(III)? In our own studies with aconitase, Cpx-I, and Cpx-II, manganese was added to the buffers as the divalent salt, i.e., $MnCl_2$. While it is quite reasonable to suggest that the effect on aconitase and/or Cpx-I activites was associated with the divalent species of manganese, the experimental design does not preclude the possibility that a manganese species of higher oxidation state, such as Mn(III), is required for the induction of these effects. The ionic radius of Mn(III) is 65 ppm, which is similar to the ionic size to Fe(III) (65 ppm at the high spin state) in aconitase (Nieboer and Fletcher, 1996; Sneed et al., 1953). Thus it is plausible that the higher oxidation state of manganese optimally fits into the geometric space of aconitase, serving as the active species in this enzymatic reaction. In the current literature, most of the studies on manganese toxicity have used Mn(II) as $MnCl_2$ rather than Mn(III). The obvious advantage of Mn(II) is its good water solubility, which allows effortless preparation in either in vivo or in vitro investigation, whereas almost all of the Mn(III) salt products on the comparison between two valent manganese species nearly infeasible. Thus a more intimate collaboration with physiochemists to develop a better way to study Mn(III) species in biological matrices is pressingly needed. Second, In spite of the special affinity of manganese for mitochondria and its similar chemical properties to iron, there is a sound reason to postulate that manganese may act as an iron surrogate in certain iron-requiring enzymes. It is, therefore, imperative to design the physiochemical studies to determine whether manganese can indeed exchange with iron in proteins, and to understand how manganese interacts with tertiary structure of proteins. The studies on binding properties (such as affinity constant, dissociation parameter, etc.) of manganese and iron to key enzymes associated with iron and energy regulation would add additional information to our knowledge of Mn-Fe neurotoxicity. Third, manganese exposure, either in vivo or in vitro, promotes cellular overload of iron. It is still unclear, however, how exactly manganese interacts with cellular iron regulatory processes and what is the mechanism underlying this cellular iron overload. As discussed above, the binding of IRP-I to TfR mRNA leads to the expression of TfR, thereby increasing cellular iron uptake. The sequence encoding TfR mRNA, in particular IRE fragments, has been well-documented in literature. It is therefore possible to use molecular technique to elaborate whether manganese cytotoxicity influences the mRNA expression of iron regulatory proteins and how manganese exposure alters the binding activity of IPRs to TfR mRNA. Finally, the current manganese investigation has largely focused on the issues ranging from disposition/toxicity study to the characterization of clinical symptoms. Much less has been done regarding the risk assessment of environmenta/occupational exposure. One of the unsolved, pressing puzzles is the lack of reliable biomarker(s) for manganese-induced neurologic lesions in long-term, low-level exposure situation. Lack of such a diagnostic means renders it impossible to assess the human health risk and long-term social impact associated with potentially elevated manganese in environment. The biochemical interaction between manganese and iron, particularly the ensuing subtle changes of certain relevant proteins, provides the opportunity to identify and develop such a specific biomarker for manganese-induced neuronal damage. By learning the molecular mechanism of cytotoxicity, one will be able to find a better way for prediction and treatment of manganese-initiated neurodegenerative diseases.

  • PDF

The Evaluation of Scattering Effects for Various Source Locations within a Phantom in Gamma Camera (감마카메라에서의 팬텀 내 선원 위치 변화에 따른 산란 영향 평가)

  • Yu, A-Ram;Lee, Young-Sub;Kim, Jin-Su;Kim, Kyeong-Min;Cheon, Gi-Jeong;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.216-224
    • /
    • 2009
  • $^{131}I$ is a radiological isotope being used widely for treatment of cancer as emitting gamma-ray and it is also applied to estimate the function of thyroid for its accumulation in thyroid. However, $^{131}I$ is more difficult to quantitate comapred to $^{99m}Tc$, because $^{131}I$ has multiple energy gamma-ray emissions compared to $^{99m}Tc$ which is a mono energetic gamma-ray source. Especially, scattered ray and septal penetration resulted by high energy gamma ray have a bad influence upon nuclear medicine image. The purpose of this study was to estimate scatter components depending on the different source locations within a phantom using Monte Carlo simulation (GATE). The simulation results were validated by comparing with the results of real experiments. Dual-head gamma camera (ECAM, Chicago, Illinois Siemens) with high energy, general-purpose, and parallel hole collimators (hole radius: 0.17 cm, septal thickness: 0.2 cm, length: 5.08 cm) was used in this experiment. The NaI crystal is $44.5{\times}59.1\;cm$ in height and width and 0.95 cm in thickness. The diameter and height of PMMA phantom were 16 cm and 15 cm, respectively. The images were acquired at 5 different locations of $^{131}I$ point source within the phantom and the images of $^{99m}Tc$ were also acquired for comparison purpose with low energy source. The simulation results indicated that the scattering was influenced by the location of source within a phantom. The scattering effects showed the same tendency in both simulation and actual experiment, and the results showed that the simulation was very adequate for further studies. The results supported that the simulation techniques may be used to generalize the scattering effects as a function of a point source location within a phantom.

  • PDF