• Title/Summary/Keyword: RABC

Search Result 15, Processing Time 0.032 seconds

Nutrients removal enhancement using a modified rotating activated bacillus contactor (RABC) process (수정 RABC 공정을 이용한 영양염류 제거능 제고에 관한 연구)

  • Kim, Sunhee;Kim, Donghwan;Jang, Giung;Kim, Eung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.1
    • /
    • pp.99-104
    • /
    • 2016
  • This study was performed to develop a new process technology for advanced wastewater treatment using a modified Rotating Activated Bacillus Contactor (RABC) process that adopts anoxic-oxic suspended biomass tanks to enhance nutrients removal. A modified lab-scale RABC process was applied to examine its applicability and to obtain the design factors for the optimum operation of the system. The modified RABC process showed a little more stable and high nutrients removal efficiency than the prototype RABC process: about 70% of nitrogen and 55% of phosphorous removal when the low organic loading (influent COD 200mg/L). However, the processing efficiency of nutrients removal rates was enhanced to great extent when high organic loading: nitrogen 90% and phosphorous 85% (influent COD 500mg/L). High organic loading stimulated extremely good biomass attachment on the reticular carrier RABC stage and the excellent nutrients removal, nevertheless with almost no offensive odor.

Comparison of Bacterial Numbers and Treatment Efficiencies in Bioreactors of Various Advanced Wastewater Treatment Processes (다양한 고도폐수처리공정에서의 생물반응조 세균수와 처리효율과의 비교)

  • Sung, Gi Moon;Cho, Yeon-Je;Kim, Sung Kyun;Park, Eun Won;Yu, Ki Hwan;Lee, Sang-Hyeon;Lee, Dong-Geun;Park, Seong Joo
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.329-334
    • /
    • 2009
  • Bacterial numbers, such as endospore-formers, and treatment efficiencies were investigated for Rotating Activated Bacillus Contactors (RABC) and other advanced wastewater treatment processes including anaerobic-anoxic-oxic (A2O), sequencing batch reactor (SBR) and biological aerated filter (BAF). Endospore-forming bacterial numbers in the RABC showed 129-fold higher levels than those of the existing advanced systems. RABC process demonstrated the highest bacterial numbers in its bioreactors (paired t-test, p<0.01). RBC biofilms and aeration tanks of the RABC system showed 131- and 476-fold higher than other existing advanced processes, respectively. Mean treatment efficiencies of the existing systems were 83.5% for chemical oxygen demand (COD), 59.1% for total nitrogen (TN) and 76.8% for total phosphorus (TP). However, RABC process removed 96.9% for COD, 96.9% for TN and 91.9% for TP for highly concentrated food wastewater (COD>1,500 mg/L, TN>150 mg/L, TP>50 mg/L). Treatment efficiency was significantly reduced when the numbers of Bacillus genus in the bioreactors decreased below $10^6CFU/mL$. The automated RABC (A-RABC), in which dissolved oxygen concentrations are automatically controlled, showed higher treatment efficiencies compared to the RABC process. The RABC system maintained sufficient bacterial numbers for the effective treatment of highly concentrated food wastewater. Moreover, final effluent was in agreement to water quality standards.

Advanced Wastewater Treatment Process using Rotating Activated Bacillus Contactor (RABC) (망상형 회전식 바실러스 접촉장치를 이용한 하수의 고도처리공정에 관한 연구)

  • Kim, Eung-Ho;Cho, Yoen-Je;Park, Seong-Joo;Shin, Kwang-Soo;Yim, Soo-Bin;Jung, Jin-Kwon
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.2
    • /
    • pp.190-195
    • /
    • 2004
  • A new technology for advanced wastewater treatment was developed using a modified Rotating Biological Contactor (RBC) process, named as Rotating Activated Bacillus Contactor (RABC) process that utilizes Bacillus sp., the facultatively anaerobic or activated microaerophilic bacteria on multiple-stage reticular rotating carriers, as a predominant species. The RABC process for a municipal wastewater with relatively low concentrations of organics, nitrogen, and phosphorus showed stable and high removal efficiencies, less than $BOD_5$ 10 mg/L, T-N 15 mg/L, and T-P 1.5 mg/L in final effluent. The performance load of RABC process was shown to be $1.23kg{\cdot}BOD/m^2{\cdot}day$ for the first stage (average $0.31kg{\cdot}BOD/m^2{\cdot}day$ for the total stages) based on both removed BOD and converted disc area corresponding to the reticular one. The sludge produced in the RABC process is characterized by low generation rate (about $0.18kg{\cdot}MLSS/kg{\cdot}BOD$) and excellent settleability. The number ratio of Bacillus ($2.4{\times}10^6CFU/ml$) to heterotrophic bacteria ($3.6{\times}10^7CFU/ml$) inhabiting in the biofilms of the RABC process was 6.7 %, indicating that Bacillus sp. was a predominant species in the biofilms. The RABC process with reticular rotating carriers showed its excellent performance for the advanced wastewater treatment without any offensive odor problem due to organic overloading.

Pilot-scale Study on Nitrogen Removal of Effluent from Biogas Plant (바이오가스 플랜트 처리수의 고농도 질소 제거)

  • Yoo, Sungin;Yu, Youngseob;Lee, Yongsei;Park, Hyunsu;Yoo, Heechan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.175.1-175.1
    • /
    • 2011
  • A rotating activated bacillus contactor (RABC) process with a series of aerobic reactors was tested in pilot scale to treat digested liquid from an anaerobic digester treating swine wastewater and sewage sludge. The influent (digested liquid) for the RABC process showed C/N ratios less than 2 as a typical feature of effluent from anaerobic digesters. The pilot process, which consists of three 3 RABC reactors, four aerobic tanks and a sedimentation tank, was operated for 210 days with a hydraulic retention time of 20 days without pH and temperature control. Since the Bacillus-enriched aerobic reactors shows high efficiencies of nitrogen removal at low DO levels less than 1.0 mg/L, they were operated at reduced aeration intensities. With relatively low concentrations of organics in comparison with nitrogen concentrations, the RABC process tested in this study showed stable and high nitrogen and organics removal efficiencies over 80%. The nitrogen removal process tested in this study was proven to be an effective and operation-cost saving (lower aeration) method to remove nitrogen without adding external carbon sources to meet the optimum C/N ratio.

  • PDF

The Bacterial Community Structure in Biofilms of the RABC Process for Swine Butchery Wastewater Treatment (돼지 도축폐수 처리를 위한 RABC 공정의 생물막 세균군집 구조)

  • Sung, Gi-Moon;Lee, Dong-Geun;Park, Seong-Joo
    • Korean Journal of Microbiology
    • /
    • v.47 no.1
    • /
    • pp.56-65
    • /
    • 2011
  • Culture-independent microscopic observations and 16S rDNA analyses were applied to describe the bacterial community inherent to the biofilm structure of the RABC (Rotating Activated Bacillus Contactors) process for swine butchery wastewater treatment. The ratios of Gram-positive bacterial counts to total bacterial counts of the RABC process were significantly increased in the last aeration tank as well as returned sludge, while those of the existing A2O (Anaerobic-Anoxic-Oxic) process maintained constant from aeration tanks to returned sludge. Totally nine phyla were recovered by 16S rDNA analysis, two of which were major groups: the Proteobacteria (64.1%) and the Actinobacteria (18.4%). The third major group was the endospore-forming Firmicutes (5.4%). The remaining six minor groups are the Bacteroidetes (3.3%), the Chlorobi (2.2%), the Nitrospirae (1.1%), the Chlorofleix (1.1%), the Acidobacteria (1.1%), and the Fusobacteria (1.1%). The ratio of endospore-forming bacteria was 19.4%, which was composed of the members of the Firmicutes phylum (5.4%) and the Intrasporangiaceae family (14.0%) of the Actinobacteria phylum. Nitrifying and denitrifying related- and phosphorus accumulating related-sequences were composed of 6.5% and 5.4% of total community, respectively, these could mean the high capacity of the RABC process to remove odor compounds and reduce eutrophication by efficient removing inorganic nutrients.

Removal Characteristics of Total Coliforms in a Rotating Activated Bacillus Contactor Process (회전식 부착 바실러스를 이용한 하수고도처리 공정에서의 총대장균군 제거 특성)

  • Kim, Eung-Ho;Cho, Yeon-Je;Park, Seong-Joo;Shin, Kwang-Soo;Yim, Soo-Bin;Park, Hyun-Ju
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.73-78
    • /
    • 2005
  • This study was performed to examine the disinfection capability of a Rotating Activated Bacillus Contactor (RABC) system, in which the predominant species, Bacillus sp. was expected to have a removal or inactivation effect of total coliforms. In a settling test with mixtures of E. coli and Bacillus sp., a high removal of E. coli was observed at $20{\sim}40^{\circ}C$, while insignificant removal at $10^{\circ}C$. In a batch test, a 4.5% addition of Bacillus sp. to activated sludge considerably enhanced the removal effect of total coliforms, indicating Bacillus sp. played an important role in improving the settlability of the sludge and coliforms. In a pilot scale RABC system, the concentration of total colifroms reduced remarkably in the settling tank, suggesting that total coliforms in the RABC process were eliminated through coagulation and precipitation, probably due to extracellular polymeric substance (EPS) of Bacillus sp. The fraction of Bacillus sp. in the total cell count in the RABC process was in the range of 4.5%~6.3%. The majority (75%) of the Bacillus sp. in the RABC process was Bacillus subtilis which is known to enhance coagulation and precipitation by producing EPS. Hence, an adoption of a RABC process might be able to eliminate the disinfection unit process from a wastewater treatment system.

Ranking Artificial Bee Colony for Design of Wireless Sensor Network (랭킹인공벌군집을 적용한 무선센서네트워크 설계)

  • Kim, Sung-Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.87-94
    • /
    • 2019
  • A wireless sensor network is emerging technology and intelligent wireless communication paradigm that is dynamically aware of its surrounding environment. It is also able to respond to it in order to achieve reliable and efficient communication. The dynamical cognition capability and environmental adaptability rely on organizing dynamical networks effectively. However, optimally clustering the cognitive wireless sensor networks is an NP-complete problem. The objective of this paper is to develop an optimal sensor network design for maximizing the performance. This proposed Ranking Artificial Bee Colony (RABC) is developed based on Artificial Bee Colony (ABC) with ranking strategy. The ranking strategy can make the much better solutions by combining the best solutions so far and add these solutions in the solution population when applying ABC. RABC is designed to adapt to topological changes to any network graph in a time. We can minimize the total energy dissipation of sensors to prolong the lifetime of a network to balance the energy consumption of all nodes with robust optimal solution. Simulation results show that the performance of our proposed RABC is better than those of previous methods (LEACH, LEACH-C, and etc.) in wireless sensor networks. Our proposed method is the best for the 100 node-network example when the Sink node is centrally located.

Metabolic Fingerprinting of Food Wastewater Treatment System (식품폐수 처리 단계별 미생물 대사지문)

  • Yoo, Ki-Hwan;Lee, Sang-Hyeon;Lee, Dong-Geun
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.4
    • /
    • pp.327-332
    • /
    • 2008
  • To determine structure and activities of microbial communities in a food wastewater treatment system, biofilm of RABC (rotating activated Bacillus contactor) and samples of aeration tanks were analyzed. Heterotrophic bacterial concentrations were similar between biofilm and stage 1 aeration tank and decreased 2-log at stage 3 aeration tank as dissolved oxygen decreased, however portions of Bacillus groups were increased at stage 3 aeration tank. It was revealed by quantitative and qualitative analysis of metabolic fingerprinting patterns of Biolog GN2 plate that RABC represented much higher activities and a different microbial community structure compared to aeration tanks. Metabolic fingerprinting showed the carbon sources that isolated Bacillus groups could or could not use, were used similarly meaning that not only Bacillus groups but also other microbial groups would contribute to the treatment of wastewater.

Comparison of Metabolic Fingerprintings between Biofilm and Aeration Tanks of RABC System for Food Wastewater Treatment (식품폐수처리 RABC system의 생물막과 포기조 대사지문 비교)

  • Lee, Dong-Geun;Yoo, Ki-Hwan;Sung, Gi-Moon;Park, Seong-Joo;Lee, Jae-Hwa;Ha, Bae-Jin;Ha, Jong-Myung;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.19 no.3
    • /
    • pp.349-355
    • /
    • 2009
  • Metabolic fingerprinting of microbial communities was investigated with Biolog GN2 plates using samples of biofilm and aeration tanks from an RABC (rotating activated Bacillus contactor) system - an advanced wastewater treatment system for the food wastewater of pig slaughterhouses. Aerobic and anaerobic results revealed the following four aspects. First, simple matching and pairs t-test of daily variation showed more defined qualitative and quantitative relatedness of active microbial communities than that of mere optical densities. Second, metabolic potentials were higher in biofilm than in aeration tanks (p<0.01), meaning higher activity of biofilm. Third, two aeration tanks showed the highest similarity (78%) and similar metabolic power (p=0.287). However, actively used carbon sources were different among samples, signifying change of active communities at each wastewater treatment step. Finally, aerobic and anaerobic metabolic fingerprinting patterns were different for the same samples representing activities of microaerophilic and/or anaerobic communities. These results suggest that daily variation and anaerobic incubation would help in the comparison of metabolic fingerprintings.