• Title/Summary/Keyword: R410A

Search Result 305, Processing Time 0.044 seconds

Flow Condensation Heat Transfer Coefficients of R22 Alternative Refrigerants in Plain and Microfin Tubes of 6.0 mm Inside Diameter (내경 6 mm 평관과 마이크로 핀관 내에서 R22 대체냉매의 흐름응축 열전달계수)

  • 박기호;서영호;박기정;정동수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.444-451
    • /
    • 2004
  • Flow condensation heat transfer coefficients (HTCs) of R22, R134a, R407C, and R410A were measured on horizontal plain and microfin tubes. The experimental apparatus was composed of three main parts; a refrigerant loop, a water loop and a water/glycol loop. The test section in the refrigerant loop was made of both a plain and a microfin copper tube of 6.0∼6.16 mm inside diameter and 1.0 m length. Refrigerants were cooled by passing cold water through an annulus surrounding the test section. Tests were performed at a fixed refrigerant saturation temperature of 4$0^{\circ}C$ with mass fluxes of 100, 200, and 300 kg/m2s. Test results showed that at similar mass flux the flow condensation HTCs of R134a were similar to those of R22 for both plain and microfin tubes. On the other hand, HTCs of R407C were lower than those of R22 by 4∼16% and 16∼42% for plain and microfin tubes respectively. And HTCs of R410A were similar to those of R22 for a plain tube but lower than those of R22 by 3∼9% for a microfin tube. Heat transfer enhancement factors of a microfin tube were 1.3∼1.9.

Development of a Cycle Simulation Program for Multi-Airconditioning Systems using R410A (R410A를 사용하는 멀티에어컨 시스템을 위한 사이클 시뮬레이션 프로그램 개발)

  • Kim, Young-Jae;Park, In-Sub;Kim, Hak-Hee;Yoon, Baek;Gil, Sung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.3
    • /
    • pp.210-215
    • /
    • 2002
  • In this study, the computer program called Multi_Cycle, which simulates the steady-state performance (coefficient of performance, capacity, power consumption and etc.) of multi- airconditioning systems using R410A, was developed. In order to validate the simulation program, a series of case studies were carried out. The Multi_Cycle consists of several subroutines for simulating indoor units. outdoor unit, compressor, and expansion devices. and for estimating the thermodynamic and transport properties of the refrigerants and moist air. It would appear to be advantageous to use the Multi_Cycle for a performance analysis when considering various kinds of refrigerants and the complex operating conditions of each unit making up the multi-airconditioner cycle. Moreover, the Multi_Cycle would seem to be useful tool in optimizing a multi-airconditioning system and establishing economical and efficient operating conditions in the multi-airconditioner cycle. In the present study, the Multi_Cycle was programmed with Digital Visual Fortran for the main simulation code and Visual Basic for- the graphic user interface.

  • PDF

Effect of Aspect Ratio of Flat Tube on R410A Evaporation Heat Transfer and Pressure Drop (납작관의 종횡비가 R-410A 증발열전달 및 압력손실에 미치는 영향)

  • Kim, Nae Hyun;Lee, Eul Jong;Byun, Ho Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.395-404
    • /
    • 2013
  • In this study, R-410A evaporation heat transfer tests were conducted in flattened tubes made from 5-mm round tubes. The test range covered a saturation temperature of $15^{\circ}C$, heat flux of $5{\sim}15kW/m^2K$, and mass flux of $200-400kg/m^2s$. The results showed that both the condensation heat transfer coefficient and the pressure drop increased as the aspect ratio increased, with a pronounced increase for an aspect ratio of 4. A comparison of the flattened tube data with existing correlations revealed that the heat transfer coefficients were reasonably predicted by the Shah correlation, and the pressure drops were reasonably predicted by the Jung and Radermacher correlation.

A Generalized Flow Model and Flow Charts for Predicting Mass Flow Rate through Short Tube Orifices (일반화된 오리피스의 유량예측 상관식 및 유량선도)

  • Choi Jong Min;Kim Yongchan;Kwak Jae Su;Kwon Byong Cheol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.895-900
    • /
    • 2004
  • With the phaseout of CFC and HCFC refrigerants, refrigeration and heat pump systems must be redesigned to match and improve system performance with alternative refrigerants. A generalized flow model for predicting mass flow rate through short tube orifices is derived from a power law form of dimensionless parameters generated by Pi-theorem. The database for developing the correlation includes extensive experimental data for R12, R22, R134a, R407C, R410A, and R502 from the open literature. The correlation yields an average deviation of $0.3\%$ and a standard deviation of $6.1\%$ based on the present database. In addition, rating charts for predicting refrigerant flow rate through short tube orifices are generated for R12, R22, R134a, R407C, R410A, and R502.

A Study on a Microchannel Condenser in a R410A A/C System (R410A 냉방시스템의 마이크로채널 응축기에 관한 연구)

  • Park, Chang-Yong
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.221-226
    • /
    • 2008
  • A microchannel condenser as a part of a R410A residential air-conditioning system was examined experimentally and numerically in this study. The system was operated in separate environmental chambers and its performance was measured in ARI A, B, and C conditions. A numerical model for the microchannel condenser was developed and its results were compared with the experimental results. The model simulated the condenser with the assumption of the uniform air and refrigerant distribution, and with the consideration of the non-uniform air distribution at the face of the condenser and refrigerant distribution in the headers. In order to consider the non-uniform air distribution, air velocity contours were generated from the measured local air velocities at the face of the condenser. The simulation results showed that the effect of the air and refrigerant distribution was not a significant parameter in predicting the capacity of the microchannel condenser which was experimentally examined in this study. The comparison of the calculated and experimental results showed that the condenser capacity could be predicted well for every test condition. However, the prediction of refrigerant pressure drop deviated significantly from the measured values.

  • PDF

A Combined Rotary Compressor-vane Expander (일체형 로타리 압축기-베인 팽창기)

  • Kim, Hyun Jin;No, Young Jae;Kim, Yong Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.3
    • /
    • pp.12-19
    • /
    • 2015
  • As a means of improving cycle performance of a R410A air-conditioning system, a combined structure of compressor and expander was introduced. A vane rotary type expander was designed to share a common shaft with twin type rolling piston rotary compressor in a housing. Numerical simulation on the performance of the combined compressor and expander was carried out. At ARI condition, the volumetric and total efficiencies of the designed vane expander were 69.37% and 30.23%, respectively. With the application of this expander, the compressor input was reduced by 3.91%, and the cooling capacity was increased by 3.98%. As a result, COP of the air-conditioning system was improved by 8.2%. As the pressure difference between the condenser and the evaporator becomes large, COP improvement increases unless the mass flow rate in the expander exceeds that in the compressor.

Performance of Short Tube Orifices Using R-410A Near the Critical Region (R-410A 임계영역 운전조건에서 오리피스의 성능특성에 관한 연구)

  • Choi, Jong-Min;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1106-1112
    • /
    • 2005
  • An experimental investigation was performed to develop an empirical correlation of R-410A flowing through short tube orifices working near the critical region. Tests were executed by varying upstream pressure from 2,619 kPa to 4,551 kPa, and upstream subcooling from 2.8 and $11.1^{\circ}C$. The experimental data were represented as a function of major operating parameters and short tube diameter. As compared to mass flow trends at normal upstream pressures, flow dependency on upstream subcooling became more significant at high upstream pressures due to a higher density change. Based on the database obtained from this study and literature, an empirical correlation was developed from a power law form of dimensionless parameters generated by the Buckingham Pi theorem. The correlation yielded good agreement with the data. Approximately $92\%$ of the data were correlated within a relative deviation of $5\%$.

A Study on Leakage Characteristics of a Scroll Compressor with alternative Refrigerants of R22 (R22 대체냉매를 적용한 스크롤 압축기의 누설 특성에 관한 연구)

  • Youn, Young;Kim, Yong-Chan;Min, Man-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.5
    • /
    • pp.377-387
    • /
    • 2001
  • This paper presents leakage characteristics of a scroll compressor applying alternative refrigerants of R22 such as R407c and R410a under actual operating conditions. Because leakage in a scroll compressor produce significant losses and degradation of performance, those should be clarified to design a high efficient scroll compressor with alternative refrigerants of R22. However, flank and tip leakage characteristics of a scroll compressor with alternative refrigerants are very limited in open literature. In the present study, both experimentation and modeling of the leakages in the scroll compressor were performed. As a result, it was observed that the leakages of the scroll compressor with R407c increased by 15%, and that with R410a increased by 76% as compared to the compressor applying R22 under standard load conditions due to a higher upstream pressure and a higher pressure difference between pockets.

  • PDF