• Title/Summary/Keyword: R-plane $Al_2O_3$

Search Result 36, Processing Time 0.031 seconds

Two Anhydrous Zeolite X Crystal Structures, $Ca_{18}Tl_{56}Si_{100}Al_{92}O_{384}\;and\;Ca_{32}Tl_{28}Si_{100}Al_{92}O_{384}$ (제올라이트 X의 두 개의 무수물 $Ca_{18}Tl_{56}Si_{100}Al_{92}O_{384}$$Ca_{32}Tl_{28}Si_{100}Al_{92}O_{384}$의 결정구조)

  • Choi, Eun Young;Kim, Yang
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.4
    • /
    • pp.384-385
    • /
    • 1999
  • Two anhydrous crystal structures of fully dehydrated, $Ca^{2+}$- and $Tl^+$-exchanged zeolite X, TEX>$Ca_{18}Tl_{56}Si_{100}Al_{92}O_{384}($Ca_{18}Tl_{56}$-X;\alpha=24.883(4)\AA)$ and TEX>$Ca_{32}Tl_{28}Si_{100}Al_{92}O_{384}($Ca_{32}Tl_{28}$-X;\alpha=24.973(4)\AA)$ per unit cell, have been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd3 at $21(1)^{\circ}C.$ $Ca_{18}Tl_{56}-X$ was prepared by ion exchange in a flowing stream of 0.045 M aqueous $Ca(NO_3)_2$ and 0.005 M $TlNO_3$. $Ca_{32}Tl_{28}-X$ was prepared similarly using a mixed solution of 0.0495 M $Ca(NO_3)_2$ and 0.0005M $TlNO_3$. Each crystal was then dehydrated at 360 $^{\circ}C$ and $2{\times}10^{-6}$ Torr for 2 days. Their structures were refined to the final error indices, $R_1=0.039\;and\;R_2=0.036$ with 382 reflections for $Ca_{18}Tl_{56}-X$ , and $R_1=0.046\;and\;R_2=0.045$ with 472 reflections for $Ca_{32}Tl_{28}$-X for which $/>3\sigma(I).$ In the structures of dehydrated $Ca_{18}Tl_{56^-}X\;and\;Ca_{32}Tl_{28}$-X, $Ca^{2+}\;and\;Tl^+$ ions are located at six crystallographic sites. Sixteen $Ca^{2+}$ ions fill the octahedral sites I at the centers of double six rings ($Ca_{18}Tl_{56}$-X:Ca-O=2.42(1) and O-Ca-O=93.06(4)$^{\circ}$; $Ca_{32}Tl_{28}$-X Ca-O=2.40(1) $\AA$ and O-Ca-O=93.08(3)$^{\circ}$). In the structure of $Ca_{18}Tl_{56}$-X, another two $Ca^{2+}$ ions occupy site II (Ca-O=2.35(2) $\AA$ and O-Ca-O=111.69(2)$^{\circ}$) and twenty six $Tl^+$ ions occupy site II opposite single six-rings in the supercage; each is 1.493 $\AA$ from the plane of three oxygens $(Tl-O=2.70(8)\AA$ and O-Tl-O=92.33(4)$^{\circ}$). About four $Tl^+$ ions are found at site II',1.695 $\AA$ into sodalite cavity from their three oxygen plane (Tl-O=2.81 (1) and O-Tl-O=87.48(3)). The remaining twenty six $Tl^+$ ions are distributed over site III'(Tl-O=2.82 (1) $\AA$ and Tl-O=2.88(3)$^{\circ}$). In the structure of $Ca_{32}Tl_{28}$-X, sixteen $Ca^{2+}$ ions and fifteen $Tl^+$ ions occupy site III' (Ca-O=2.26(1) $\AA$ and O-Ca-O=119.14(4)$^{\circ}$; Tl-O=2.70(1) $\AA$ and O-Tl-O=92.38$^{\circ}$) and one $Tl^+$ ion occupies site II'. The remaining twelve $Tl^+$ ions are distributed over site III'. It appears that $Ca^{2+}$ ions prefer sites I and II in that order and $Tl^+$ ions occupy the remaining sites.

  • PDF

The Fatigue Behavior of Mechanically Alloyed Al-4Mg Alloys Dispersed with Oxide Particles (기계적합금화된 분산형 Al-4Mg기 합금의 피로거동)

  • Pyun, J.W.;Cho, J.S.;Kwun, S.I.;Jo, Y.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.4
    • /
    • pp.237-242
    • /
    • 1993
  • The fatigue behaviors of mechanically alloyed Al-4Mg alloys dispersed with either $Al_2O_3$ or $MgAl_2O_4$ oxide particles were investigated. This study maily concerned with the role of coherency of dispersed particles with the matrix on the fatigue behavior of the alloys. The $MgAl_2O_4$ which has a spinel structure with the lattice parameter of exactly the twice of Al showed the habit relation with the matrix. The mechanically alloyed Al-4Mg alloys showed stable stress responses with fatigue cycles from start to failure regadless of strain amplitudes and of existence of dispersoids. The Al-4Mg alloy dispersed with $MgAl_2O_4$ showed not only the better static mechanical properties but also the better low cycle fatigue resistance than that with $Al_2O_3$, i.e., much higher plastic strain energy dissipated to failure, at low strain amplitude. However, this alloy showed inferior fatigue resistance to that dispersed with $Al_2O_3$ or that without dispersion at high strain amplitude. These results imply that $MgAl_2O_4$ may promote lowering the stacking fault energy of the alloy inherited from the coherency with the matrix so that dislocations shuttle back and forth on the same slip plane without cross slipping to other planes during fatigue at low strain amplitude resulting in long fatigue life.

  • PDF

Two Anhydrous Zeolite X Crystal Structures, $Pd_{18}Ti_{56}Si_{100}Al_{92}O_{384} and Pd_{21}Tl_{50}Si_{100}Al_{92}O_{384}$

  • Yun, Bo Yeong;Song, Mi Gyeong;Lee, Seok Hui;Kim, Yang
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.30-36
    • /
    • 2001
  • The crystal structures of fully dehydrated $Pd^{2+}$ - and $TI^{+}$ -exchanged zeolite X, $Pd_{18}TI_{56}Si_{100}Al_{92}O_{384}(Pd_{18}TI_{50-}X$, a = $24.935(4)\AA$ and $Pd_{21}TI_{50}Si_{100}Al_{92}O_{384}(Pd_{21}TI_{50-}X$ a = $24.914(4)\AA)$, have been determined by single-crystal X-ray diffraction methods in the cubic space group Fd3 at $21(1)^{\circ}C.$ The crystals were prepared using an exchange solution that had a $Pd(NH_3)_4Cl_2\;:TINO_3$ mole ratio of 50 : 1 and 200 : 1, respectively, with a total concentration of 0.05M for 4 days. After dehydration at $360^{\circ}C$ and 2 ${\times}$$10^{-6}$ Torr in flowing oxygen for 2 days, the crystals were evacuated at $21(1)^{\circ}C$ for 2 hours. They were refined to the final error indices $R_1$ = 0.045 and $R_2$ = 0.038 with 344 reflections for $Pd_{18}Tl_{56-}X$, and $R_1$ = 0.043 and $R_2$ = 0.045 with 280 reflections for $Pd_{21}Tl_{50-}X$; I > $3\sigma(I).$ In the structure of dehydrated $Pd_{18}Tl_{56-}X$, eighteen $Pd^{2+}$ ions and fourteen $TI^{+}$ ions are located at site I'. About twenty-seven $TI^{+}$ ions occupy site II recessed $1.74\AA$ into a supercage from the plane of three oxygens. The remaining fifteen $TI^{+}$ ions are distributed over two non-equivalent III' sites, with occupancies of 11 and 4, respectively. In the structure of $Pd_{21}Tl_{50-}X$, twenty $Pd^{2+}$ and ten $TI^{+}$ ions occupy site I', and one $Pd^{2+}$ ion is at site I. About twenty-three $TI^{+}$ ions occupy site II, and the remaining seventeen $TI^{+}$ ions are distributed over two different III' sites. $Pd^{2+}$ ions show a limit of exchange (ca. 39% and 46%), though their concentration of exchange was much higher than that of $TI^{+}$ ions. $Pd^{2+}$ ions tend to occupy site I', where they fit the double six-ring plane as nearly ideal trigonal planar. $TI^{+}$ ions fill the remaining I' sites, then occupy site II and two different III' sites. The two crystal structures show that approximately two and one-half I' sites per sodalite cage may be occupied by $Pd^{2+}$ ions. The remaining I' sites are occupied by $TI^{+}$ ions with Tl-O bond distance that is shorter than the sum of their ionic radii. The electrostatic repulsion between two large $TI^{+}$ ions and between $TI^{+}$ and $Pd^{2+}$ ions in the same $\beta-cage$ pushes each other to the charged six-ring planes. It causes the Tl-O bond to have some covalent character. However, $TI^{+}$ ions at site II form ionic bonds with three oxygens because the super-cage has the available space to obtain the reliable ionic bonds.

Chemistry and Crystallographic Studies of Metal Ion Exchanged Zeolite X. Ⅰ. The Crystal Structure of Fully Dehydrated and Fully $K^+$-Exchanged Zeolite X, $K_{92}$-X

  • 장세복;김양
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.6
    • /
    • pp.539-542
    • /
    • 1995
  • The crystal structure of K92-X (K92Al92Si100O384), a=25.128(1) Å, dehydrated at 360 ℃ and 2X 10-6 Torr, has been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd&bar{3} at 21(1) ℃. The structure was refined to the final error indices R1=0.044 and Rw=0.039 with 242 reflections for which I<3σ(I). In this structure, ninety-two K+ ions are located at the five different crystallographic sites. Sixteen K+ ions are located at the centers of the double six rings (site I; K(1)-O(3)=2.65(2) Å and O(3)-K(1)-O(3)=92.0(6)°). About twelve K+ ions lie at site I' in the sodalite cavity opposite double six rings (D6R's) and these K+ ions are recessed ca. 1.62 Å into the sodalite cavity from their O(3) plane (K(2)-O(3)=2.74(2) Å, O(3)-K(2)-O(3)=88.5(8)°). About thirty-two K+ ions are located at the site II in the supercage and these K+ ions are recessed ca. 1.20 Å into the supercage from their O(2) plane (K(3)-O(2)=2.64(2) Å, and O(2)-K(3)-O(2)=101(1)°). About twenty-two K+ ions lie at the site III in the supercage opposite 4-ring ladder and the remaining ten K+ ions lie at the site III' near the 4-ring ladder in the supercage (K(4)-O(4)=2.88(3) Å, O(4)-K(4)-O(4)=79.8(9)°, K(5)-O(4)=2.8(2) Å, and O(4)-K(5)-O(4)=68(5)°).

The Crystal Structure of Fully Dehydrated Fully $Ba^{2+}$-Exchanged Zeolite X

  • 장세복;김양
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.3
    • /
    • pp.248-251
    • /
    • 1995
  • The crystal structure of Ba46-X, Ba46Al92Si100O384 [a= 25.297(1) Å], has been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd&bar{3}at 21(1) ℃. The crystal was prepared by ion exchange in flowing stream of 0.05 M Ba(OH)2 aqueous solution for 5 days. The crystal was then dehydrated at 380 ℃ and 2 × 10-6 Torr for 2 days. The structure was refined to the final error indices R1= 0.051 and Rw= 0.054 with 369 reflections for which I > 3σ(I). In this structure, all Ba2+ ions are located at the three different crystallographic sites: fourteen Ba2+ ions are located at site Ⅰ, the centers of the double six rings, two Ba2+ ions lie at site Ⅰ', in the sodalite cavity opposite double six rings(D6R's) and another thirty Ba2+ ions are located at site Ⅱ in the supercage. Two Ba2+ ions are recessed ca. 0.27 Å into the sodalite cavity from their three O(3) oxygen plane and thirty Ba2+ ions are recessed ca. 1.11 Å into the supercage from their three O(2) oxygen planes, respectively (Ba(1)-O(3) = 2.76(1) Å, O(3)-Ba(1)-O(3) = 180(0)°, Ba(2)-O(3) = 2.45(1) Å, O(3)-Ba(2)-O(3) = 108(1)°, Ba(3)-O(2)=2.65(1) Å, and O(2)-Ba(3)-O(2)=103.9(4)°).

Crystallographic analysis of dehydrated fully Tl+-exchanged zeolite Y

  • Lim, Woo Taik;Kwon, Ji Hye;Choi, Sik Young;Kim, Young Hun;Heo, Nam Ho
    • Analytical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.278-286
    • /
    • 2005
  • The crystal structure of ($Tl_{71}$-Y ($Tl_{71}Si_{121}Al_{71}O_{384}$), ${\alpha}=24.706(3){\AA}$, dehydrated at 653 K and $8{\times}10^{-6}$ torr, has been determined by single-crystal X-ray diffraction techniques in the cubic space group $Fd\bar{3}m$ at 294(1) K. The structure was refined using all intensities to the final error indices (using only the 302 reflection for which $F_{\circ}$ > $4{\sigma}(F_0)$) $R_1=0.0602$ (based on F) and $R_w=0.1744$ (based on $F_2$). The 71 $Tl^+$ ions per unit cell are found at four crystallographically distinct positions. Site I' position in the sodalite cavity opposite D6Rs are each occupied by eighteen $Tl^+$ ions per unit cell; these $Tl^+$ ions are recessed ca. $1.45{\AA}$ into the sodalite cavity from their O(3) plane (Tl-O=2.701(15), $3.163(16){\AA}$ and O-Tl-O=$92.1(4)^{\circ}$). The 23 $T1^+$ ions fill site II in the supercage; these $T1^+$ ions are recessed ca. $1.58{\AA}$ into the supercage from their O(2) plane (Tl-O = 2.850(16), $3.156(16){\AA}$ and O-T1-O = $85.1(5)^{\circ}$). The 19 $Tl^+$ ions lie at site III' in the supercage near a triple 4-ring (Tl-O = 3.10(7), $3.39(5){\AA}$ and O-Tl-O = 47.8(9), $95.3(18)^{\circ}$) and the remaining II ions occupy another site III' near a triple 4-ring in the supercage (Tl-O = 2.81(4), $2.71(4){\AA}$ and O-Tl-O = $57.3(8)^{\circ}$).

Crystal Structures of Fully Dehydrated $Ca^{2+}$-Exchanged Zeolite X, $Ca_{46}-X$, and $Ca^{2+}$ and $K^+$-Exchanged Zeolite X, $Ca_{32}K_{28}-X$ ($Ca^{2+}$ 이온으로 완전히 치환된 제올라이트 X, $Ca_{46}-X$$Ca^{2+}$ 이온과 $K^+$ 이온으로 치환된 제올라이트 X, $Ca_{32}K_{28}-X$를 완전히 진공 탈수한 결정구조)

  • Jang, Se Bok;Song, Seong Hwan;Kim, Yang
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.1
    • /
    • pp.7-13
    • /
    • 1995
  • The crystal sructures of $X(Ca_{46}Al_{92}Si_{100}O_{384})$ and $Ca_{32}K_{28}-X(Ca_{32}K_{28}Al_{92}Si_{100}O_{384})$ dehydrated at $360^{\circ}C$ and $2{\times}10^{-6}$ Torr have been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd3 at $21(1)^{\circ}C.$ Their structures were refined to the final error indices, R_1=0.096,\;and\;R_2=0.068$ with 166 reflections, and R_1=0.078\;and\;R_2=0.056$ with 130 reflections, respectively, for which I > $3\sigma(I).$ In dehydrated $Ca_{48}-X,\;Ca^{2+}$ ions are located at two different sites opf high occupancies. Sixteen $Ca^{2+}$ ions are located at site I, the centers of the double six rings $(Ca(1)-O(3)=2.51(2)\AA$ and thirty $Ca^{2+}$ ions are located at site II, the six-membered ring faces of sodalite units in the supercage. Latter $Ca^{2+}$ ions are recessed $0.44\AA$ into the supercage from the three O(2) oxygen plane (Ca(2)-O(2)= $2.24(2)\AA$ and $O(2)-Ca(2)-O(2)=119(l)^{\circ}).$ In the structure of $Ca_{32}K_{28}-X$, all $Ca^{2+}$ ions and $K^+$ ions are located at the four different crystallographic sites: 16 $Ca^{2+}$ ions are located in the centers of the double six rings, another sixteen $Ca^{2+}$ ions and sixteen $K^+$ ions are located at the site II in the supercage. These $Ca^{2+}$ ions adn $K^+$ ions are recessed $0.56\AA$ and $1.54\AA$, respectively, into the supercage from their three O(2) oxygen planes $(Ca(2)-O(2)=2.29(2)\AA$, $O(2)-Ca(2)-O(2)=119(1)^{\circ}$, $K(1)-O(2)=2.59(2)\AA$, and $O(2)-K(1)-O(2)=99.2(8)^{\circ}).$ Twelve $K^+$ ions lie at the site III, twofold axis of edge of the four-membered ring ladders inside the supercage $(K(2)-O(4)=3.11(6)\AA$ and $O(1)-K(2)-O(1)=128(2)^{\circ}).$

  • PDF

Synthesis of Fully Dehydrated Partially Cs+-exchanged Zeolite Y (FAU, Si/Al = 1.56), |Cs45Na30|[Si117Al75O384]-FAU and Its Single-crystal Structure

  • Seo, Sung-Man;Kim, Ghyung-Hwa;Lee, Seok-Hee;Bae, Jun-Seok;Lim, Woo-Taik
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.6
    • /
    • pp.1285-1292
    • /
    • 2009
  • Large single crystals of zeolite, |$Na_{75}$|[$Si_{117}Al_{75}O_{384}$]-FAU (Na-Y, Si/Al = 1.56), were synthesized from gels with composition of 3.58Si$O_2$ : 2.08NaAl$O_2$ : 7.59NaOH : 455$H_2$O : 5.06TEA : 2.23TCl. One of these, a colorless single-crystal was ion exchanged by allowing aqueous 0.02 M CsOH to flow past the crystal at 293 K for 3 days, followed by dehydration at 673 K and 1 ${\times}\;10^{-6}$ Torr for 2 days. The crystal structure of fully dehydrated partially $Cs^+$-exchanged zeolite Y, |$Cs_{45}Na_{30}$|[$Si_{117}Al_{75}O_{384}$]-FAU per unit cell (a = 24.9080(10) $\AA$) was determined by single-crystal X-ray diffraction technique in the cubic space group Fd $\overline{3}$ m at 294(1) K. The structure was refined using all intensities to the final error indices (using only the 877 reflections with $F_o\;>\;4{\sigma}(F_o))\;R_1$ = 0.0966 (Based on F) and $R_2\;=\;0.2641\;(Based\;on\;F^2$). About forty-five $Cs^+$ ions per unit cell are found at six different crystallographic sites. The 2 $Cs^+$ ions occupied at site I, at the centers of double 6-ring (D6Rs, Cs-O = 2.774(10) $\AA$ and O-Cs-O = 88.9(3) and 91.1(3)$^o$). Two $Cs^+$ ions are found at site I’ in the sodalite cavity; the $Cs^+$ ions were recessed 2.05 $\AA$ into the sodalite cavity from their 3-oxygen plane (Cs-O = 3.05(3) $\AA$ and O-Cs-O = 77.4(13)$^o$). Site-II’ positions (opposite single 6-rings in the sodalite cage) are occupied by 7 $Cs^+$ ions, each of which extends 2.04 $\AA$ into the sodalite cage from its 3-oxygen plane (Cs-O = 3.067(11) $\AA$ and O-Cs-O = 80.1(3)$^o$). The 26 $Cs^+$ ions are nearly three-quarters filled at site II in the supercage, being recessed 2.34 $\AA$ into the supercage (Cs-O = 3.273(8) $\AA$ and O-Cs-O = 74.3(3)$^o$). The 4 $Cs^+$ ions are found at site III deep in the supercage (Cs-O = 3.321(19) and 3.08(3) $\AA$), and 4 $Cs^+$ ions at another site III’ (Cs-O = 2.87(4) and 3.38(4) $\AA$). About 30 $Na^+$ ions per unit cell are found at one crystallographic site; The $Na^+$ ions are located at site I’ in the sodalite cavity opposite double 6-rings (Na-O = 2.578(11) $\AA$ and O-Na-O = 97.8(4)$^o$).

Iodine Sorption Complexes of Partially Cobalt(II) Exchanged Zeolite A. Two Crystal Structures of $Co_{3.5}Na_5Si_{12}Al_{12}O_{48}\cdot2.5I_2\;and\;Co_{3.5}Na_5Si_{12}Al_{12}O_{48}\cdot5.0I_2$

  • Kim, Yang;Lee, Suk-Hee;Seff, Karl
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.5
    • /
    • pp.426-430
    • /
    • 1989
  • Two crystal structures of iodine sorption complexes of dehydrated partially Co(Ⅱ )-exchanged zeolite A, $Co_{3.5}Na_5-A{\cdot}xI_2$, x = 2.5 and 5.0, have been determined by single crystal X-ray diffraction techniques. Both structures were solved and refined in cubic space group, Pm3m at $21(1)^{\circ}C$. The structures of $Co_{3.5}Na_5-A{\cdot}2.5I_2$(a = 12.173(1) ${\AA}$) and $Co_{3.5}Na_5-A{\cdot}5.0I_2$(a = 12.130(1) ${\AA}$) were refined to the final error indices, $R_1$ = 0.081 and $R_2$ = 0.077 with 261 reflections and $R_1$ = 0.103 and $R_2$ = 0.112 with 225 reflections, respectively, for which I>3${\sigma}$(I). In both structures, 3.5 $Co^{2+}$ ions and 4.5 $Na^+$ ions per unit cell lie at two crystallographically different 6-ring positions. 0.5 $Na^+$ ion lines in an 8-oxygen ring plane. Dehydrated $Co_{3.5}Na_5$-A sorbs 2.5 iodine molecules per unit cell at $70^{\circ}C$ (vapor pressure of $I_2$ is ca. 8.3 torr) within 30 minutes and 5 iodine molecules per unit cell at $80^{\circ}C$ (vapor pressure of $I_2$ is ca. 14.3 torr) within 24 hours. Each iodine molecule makes a close approach, along its axis to framework oxygen atom with I-I-O = $175^{\circ}$.

Single-Crystal Structure of |Li50Na25|[Si117Al75O384]-FAU

  • Kim, Hu Sik;Suh, Jeong Min;Kang, Jum Soon;Lim, Woo Taik
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.1
    • /
    • pp.12-19
    • /
    • 2013
  • The single-crystal structure of fully dehydrated partially $Li^+$-exchanged zeolite Y, ${\mid}Li_{50}Na_{25}{\mid}[Si_{117}Al_{75}O_{384}]$-FAU, was determined by single-crystal synchrotron X-ray diffraction techniques in the cubic space group $Fd\bar{3}m$ at 100(1) K. Ion exchange was accomplished by flowing stream of 0.1 M aqueous $LiNO_3$ for 2 days at 293 K, followed by vacuum dehydration at 623 K and $1{\times}10^{-6}$ Torr for 2 days. The structure was refined using all intensities to the final error indices (using only the 801 reflections with ($F_o$ > $4{\sigma}(F_o)$) $R_1/R_2=0.043/0.140$. The 50 $Li^+$ ions per unit cell are found at three different crystallographic sites. The 19 $Li^+$ ions occupy at site I' in the sodalite cavity: the $Li^+$ ions are recessed 0.30 ${\AA}$ into the sodalite cavity from their 3-oxygens plane (Li-O = 1.926(5) ${\AA}$ and $O-Li-O=117.7(3)^{\circ}$). The 20 $Li^+$ ions are found at site II in the supercage, being recessed 0.23 ${\AA}$ into the supercage (Li-O = 2.038(5) ${\AA}$ and $O-Li-O=118.7(3)^{\circ}$). Site III' positions are occupied by 11 $Li^+$ ions: these $Li^+$ ions bind strongly to one oxygen atom (Li-O = 2.00(8) ${\AA}$). About 25 $Na^+$ ions per unit cell are found at four different crystallographic sites: 4 $Na^+$ ions are at site I, 5 at site I', 12 at site II, and the remaining 4 at site III'.