DOI QR코드

DOI QR Code

Synthesis of Fully Dehydrated Partially Cs+-exchanged Zeolite Y (FAU, Si/Al = 1.56), |Cs45Na30|[Si117Al75O384]-FAU and Its Single-crystal Structure

  • Seo, Sung-Man (Department of Applied Chemistry, Andong National University) ;
  • Kim, Ghyung-Hwa (Pohang Accelerator Laboratory, Pohang University of Science and Technology) ;
  • Lee, Seok-Hee (Department of Science Education, Busan National University of Education) ;
  • Bae, Jun-Seok (Division of Chemical Engineering, The University of Queensland) ;
  • Lim, Woo-Taik (Department of Applied Chemistry, Andong National University)
  • Published : 2009.06.20

Abstract

Large single crystals of zeolite, |$Na_{75}$|[$Si_{117}Al_{75}O_{384}$]-FAU (Na-Y, Si/Al = 1.56), were synthesized from gels with composition of 3.58Si$O_2$ : 2.08NaAl$O_2$ : 7.59NaOH : 455$H_2$O : 5.06TEA : 2.23TCl. One of these, a colorless single-crystal was ion exchanged by allowing aqueous 0.02 M CsOH to flow past the crystal at 293 K for 3 days, followed by dehydration at 673 K and 1 ${\times}\;10^{-6}$ Torr for 2 days. The crystal structure of fully dehydrated partially $Cs^+$-exchanged zeolite Y, |$Cs_{45}Na_{30}$|[$Si_{117}Al_{75}O_{384}$]-FAU per unit cell (a = 24.9080(10) $\AA$) was determined by single-crystal X-ray diffraction technique in the cubic space group Fd $\overline{3}$ m at 294(1) K. The structure was refined using all intensities to the final error indices (using only the 877 reflections with $F_o\;>\;4{\sigma}(F_o))\;R_1$ = 0.0966 (Based on F) and $R_2\;=\;0.2641\;(Based\;on\;F^2$). About forty-five $Cs^+$ ions per unit cell are found at six different crystallographic sites. The 2 $Cs^+$ ions occupied at site I, at the centers of double 6-ring (D6Rs, Cs-O = 2.774(10) $\AA$ and O-Cs-O = 88.9(3) and 91.1(3)$^o$). Two $Cs^+$ ions are found at site I’ in the sodalite cavity; the $Cs^+$ ions were recessed 2.05 $\AA$ into the sodalite cavity from their 3-oxygen plane (Cs-O = 3.05(3) $\AA$ and O-Cs-O = 77.4(13)$^o$). Site-II’ positions (opposite single 6-rings in the sodalite cage) are occupied by 7 $Cs^+$ ions, each of which extends 2.04 $\AA$ into the sodalite cage from its 3-oxygen plane (Cs-O = 3.067(11) $\AA$ and O-Cs-O = 80.1(3)$^o$). The 26 $Cs^+$ ions are nearly three-quarters filled at site II in the supercage, being recessed 2.34 $\AA$ into the supercage (Cs-O = 3.273(8) $\AA$ and O-Cs-O = 74.3(3)$^o$). The 4 $Cs^+$ ions are found at site III deep in the supercage (Cs-O = 3.321(19) and 3.08(3) $\AA$), and 4 $Cs^+$ ions at another site III’ (Cs-O = 2.87(4) and 3.38(4) $\AA$). About 30 $Na^+$ ions per unit cell are found at one crystallographic site; The $Na^+$ ions are located at site I’ in the sodalite cavity opposite double 6-rings (Na-O = 2.578(11) $\AA$ and O-Na-O = 97.8(4)$^o$).

Keywords

References

  1. Chemical Week 1996, 158(22), 35.
  2. Warzywoda, J.; Valcheva-Traykova, M.; Rossetti, Jr., G. A.; Bac, N.; Joesten, R.; Suib, S. L.; Sacco, Jr., A. J. Cryst. Growth 2000, 220, 150-160. https://doi.org/10.1016/S0022-0248(00)00660-6
  3. Breck, D. W. Zeolite Molecular Sieves; Wiley: New York, 1974; p 92-107.
  4. Barthomeuf, D. Catal. Rev. Sci. Eng. 1996, 38, 521-612. https://doi.org/10.1080/01614949608006465
  5. Feast, S.; Lercher, J. A. Stud. Surf. Sci. Catal. 1996, 102, 363. https://doi.org/10.1016/S0167-2991(06)81408-4
  6. Hunger, M.; Schenk, U.; Buchholz, A. J. Phys. Chem. B 2000, 104, 12230-12236. https://doi.org/10.1021/jp001571g
  7. Frising, A.; Leflaive, P. Micropor. Mesopor. Mater. 2008, 114, 27-63. https://doi.org/10.1016/j.micromeso.2007.12.024
  8. Shepelev, Y. F.; Butikova, I. K.; Smolin, Yu. I. Zeolites 1991, 11(3), 287-292. https://doi.org/10.1016/S0144-2449(05)80234-9
  9. Sun, T.; Seff, K.; Heo, N. H.; Petranovskii, V. P. J. Phys. Chem. 1994, 98, 5768-5772. https://doi.org/10.1021/j100073a033
  10. Ryu, K. S.; Bae, M. N.; Kim, Y.; Seff, K. Micropor. Mesopor. Mater. 2004, 71, 65-75. https://doi.org/10.1016/j.micromeso.2004.01.006
  11. Bae, M. N. Bull. Korean Chem. Soc. 2007, 28(2), 251-256. https://doi.org/10.5012/bkcs.2007.28.2.251
  12. Koller, H.; Burger, B.; Schneider, A. M.; Engelhardt, G.;Weitkamp, J. Macropor. Mater. 1995, 5, 219-232. https://doi.org/10.1016/0927-6513(95)00061-5
  13. Breck, D. W. Zeolite Molecular Sieves; Wiley: New York, 1974; p 553.
  14. Handbook of Chemistry and Physics, 70th ed.; The Chemical Rubber Co.: Cleveland, OH, 1989/1990; p F-187.
  15. Breck, D. W. Zeolite Molecular Sieves; Wiley: New York, 1974; p 145.
  16. Barrer, R. M. Hydrothermal Chemistry of Zeolite; Academic Press: London, 1982; p 24.
  17. Sherry, H. S. J. Phys. Chem. 1966, 70, 1158-1168. https://doi.org/10.1021/j100876a031
  18. Ferchiche, S.; Valcheva-Traykova, M.; Vaughan, D. E. W.;Warzywoda, J.; Sacco, Jr., A. J. Cryst. Growth 2001, 222, 801-805. https://doi.org/10.1016/S0022-0248(00)00979-9
  19. Lim, W. T.; Seo, S. M.; Kim, G. H.; Lee, H. S.; Seff, K. J. Phys. Chem. C 2007, 111, 18294-18306. https://doi.org/10.1021/jp0742721
  20. Lim, W. T.; Kim, H. S.; Moon, D. J. Unpublished results.
  21. Otwinowski, Z.; Minor, W. Methods Enzymol. 1997, 276, 307-326. https://doi.org/10.1016/S0076-6879(97)76066-X
  22. Bruker-AXS (ver. 6.12); XPREP, Program for the Automatic Space Group Determination, Bruker AXS Inc.: Madison, Wisconsin, USA, 2001.
  23. Sheldrick, G. M. SHELXL97; Program for the Refinement of Crystal Structures: University of Gottingen, Germany, 1997.
  24. Lim, W. T.; Choi, S. Y.; Choi, J. H.; Kim, Y. H.; Heo, N. H.; Kim, S. H.; Seff, K. Micropor. Mesopor. Mater. 2006, 92, 234-242. https://doi.org/10.1016/j.micromeso.2005.11.052
  25. Doyle, P. A.; Turner, P. S. Acta Crystallogr., Sect. A 1968, 24, 390-397. https://doi.org/10.1107/S0567739468000756
  26. International Table for X-ray Crystallography; Ibers, J. A.;Hamilton, W. C., Eds.; Kynoch Press: Birmingham, England, 1974; Vol. IV, pp 71-98.
  27. Cromer, D. T. Acta Crystallogr. 1965, 18, 17-23. https://doi.org/10.1107/S0365110X6500004X
  28. International Table for X-ray Crystallography; Kynoch Press: Birmingham, England, 1974; Vol. IV, pp 148-150.
  29. Smithm, J. V. Molecular Sieve Zeolites-I; Flanigen, E. M.; Sand, L. B., Eds.; Advances in Chemistry Series: American Chemical Society Washinton, D. C., 1971; vol. 101, pp 171-200.
  30. Yeom, Y. H.; Kim, Y.; Seff, K. J. Phys. Chem. B 1997, 101, 5314-5318. https://doi.org/10.1021/jp970727i
  31. Song, M. K.; Kim, Y.; Seff, K. J. Phys. Chem. B 2003, 107, 3117-2123. https://doi.org/10.1021/jp0215623
  32. Loewenstein, W. Am. Mineral. 1954, 39, 92-96.
  33. Sun, T.; Seff, K. J. Phys. Chem. 1993, 97, 5213-5214. https://doi.org/10.1021/j100122a007
  34. Lee, S. K.; Kim, D. S.; Kim, Y.; Seff, K. Bull. Korean Chem. Soc. 1998, 19, 98-103.
  35. Seo, S. M.; Kim, G. H.; Lee, H. S.; Ko, S. O.; Lee, O. S.; Kim, Y.H.; Kim, S. H.; Heo, N. H.; Lim, W. T. Analytical Sciences 2006, 22, x209-210 https://doi.org/10.2116/analsci.22.209
  36. Zhu, L.; Seff, K. J. Phys. Chem. B 1999, 103, 9512-9518. https://doi.org/10.1021/jp991817l

Cited by

  1. Synthesis and single-crystal structures of fully dehydrated fully Sr2+-exchanged zeolite Y (FAU) and its benzene sorption complex, |Sr37.5|[Si117Al75O384]-FAU and |Sr37.5(C6H6)33(H2O)15|[Si117Al75O384]-FAU vol.18, pp.5, 2011, https://doi.org/10.1007/s10934-010-9415-z
  2. Single-Crystal Structure of Fully Dehydrated, Largely Rb+-Exchanged Zeolite Y (FAU, Si/Al = 1.56), |Rb59Na16|[Si117Al75O384]-FAU vol.43, pp.8, 2013, https://doi.org/10.1007/s10870-013-0435-9
  3. Preparation and structural study of fully dehydrated, highly Mg2+-exchanged zeolite Y (FAU, Si/Al = 1.56) from undried methanol solution vol.21, pp.5, 2014, https://doi.org/10.1007/s10934-014-9812-9
  4. Single-Crystal Structures of Sr2+ and Cs+-Exchanged Zeolites X and Y, |Sr40Cs12|[Si100Al92O384]-FAU and |Sr29Cs17|[Si117Al75O384]-FAU vol.44, pp.5, 2014, https://doi.org/10.1007/s10870-014-0511-9
  5. Single-crystal structures of Zn2+-exchanged zeolite A: dependence on Zn2+ concentration of aqueous solution during exchange vol.22, pp.2, 2015, https://doi.org/10.1007/s10934-014-9907-3
  6. Behavior of cesium cation in zeolite Y (FAU, Si/Al = 1.56) and their single-crystal structures, |Cs75−xNax|[Si117Al75O384]-FAU (x = 35 and 54) vol.24, pp.1, 2017, https://doi.org/10.1007/s10934-016-0237-5
  7. Site Competition of Ca2+ and Cs+ Ions in the Framework of Zeolite Y (Si/Al = 1.56) and Their Crystallographic Studies vol.31, pp.4, 2018, https://doi.org/10.9727/jmsk.2018.31.4.235
  8. Synthesis and Single-crystal Structures of Fully Dehydrated and Highly Proton-exchanged Zeolites Y, |H74Na1|[Si117Al75}O384]-FAU and |H vol.30, pp.11, 2009, https://doi.org/10.5012/bkcs.2009.30.11.2773
  9. Single-Crystal Structure of |Li50Na25|[Si117Al75O384]-FAU vol.57, pp.1, 2013, https://doi.org/10.5012/jkcs.2013.57.1.12
  10. Crystal Structure and Luminescence of Sn,I,Cs,Na-Y, a Lead-Free Zeolite Containing Tetrahedrally Distorted Cubes of Sn4I44+ vol.125, pp.28, 2009, https://doi.org/10.1021/acs.jpcc.1c04350