• Title/Summary/Keyword: R-module

Search Result 1,038, Processing Time 0.034 seconds

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part I: Flow and turbulence fields

  • Bakhtyar, R.;Dastgheib, A.;Roelvink, D.;Barry, D.A.
    • Ocean Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.23-60
    • /
    • 2016
  • The major objective of this study was to develop further understanding of 3D nearshore hydrodynamics under a variety of wave and tidal forcing conditions. The main tool used was a comprehensive 3D numerical model - combining the flow module of Delft3D with the WAVE solver of XBeach - of nearshore hydro- and morphodynamics that can simulate flow, sediment transport, and morphological evolution. Surf-swash zone hydrodynamics were modeled using the 3D Navier-Stokes equations, combined with various turbulence models (${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES). Sediment transport and resulting foreshore profile changes were approximated using different sediment transport relations that consider both bed- and suspended-load transport of non-cohesive sediments. The numerical set-up was tested against field data, with good agreement found. Different numerical experiments under a range of bed characteristics and incident wave and tidal conditions were run to test the model's capability to reproduce 3D flow, wave propagation, sediment transport and morphodynamics in the nearshore at the field scale. The results were interpreted according to existing understanding of surf and swash zone processes. Our numerical experiments confirm that the angle between the crest line of the approaching wave and the shoreline defines the direction and strength of the longshore current, while the longshore current velocity varies across the nearshore zone. The model simulates the undertow, hydraulic cell and rip-current patterns generated by radiation stresses and longshore variability in wave heights. Numerical results show that a non-uniform seabed is crucial for generation of rip currents in the nearshore (when bed slope is uniform, rips are not generated). Increasing the wave height increases the peaks of eddy viscosity and TKE (turbulent kinetic energy), while increasing the tidal amplitude reduces these peaks. Wave and tide interaction has most striking effects on the foreshore profile with the formation of the intertidal bar. High values of eddy viscosity, TKE and wave set-up are spread offshore for coarser grain sizes. Beach profile steepness modifies the nearshore circulation pattern, significantly enhancing the vertical component of the flow. The local recirculation within the longshore current in the inshore region causes a transient offshore shift and strengthening of the longshore current. Overall, the analysis shows that, with reasonable hypotheses, it is possible to simulate the nearshore hydrodynamics subjected to oceanic forcing, consistent with existing understanding of this area. Part II of this work presents 3D nearshore morphodynamics induced by the tides and waves.

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part II: Sediment transport

  • Bakhtyar, R.;Dastgheib, A.;Roelvink, D.;Barry, D.A.
    • Ocean Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.61-97
    • /
    • 2016
  • This is the second of two papers on the 3D numerical modeling of nearshore hydro- and morphodynamics. In Part I, the focus was on surf and swash zone hydrodynamics in the cross-shore and longshore directions. Here, we consider nearshore processes with an emphasis on the effects of oceanic forcing and beach characteristics on sediment transport in the cross- and longshore directions, as well as on foreshore bathymetry changes. The Delft3D and XBeach models were used with four turbulence closures (viz., ${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES) to solve the 3D Navier-Stokes equations for incompressible flow as well as the beach morphology. The sediment transport module simulates both bed load and suspended load transport of non-cohesive sediments. Twenty sets of numerical experiments combining nine control parameters under a range of bed characteristics and incident wave and tidal conditions were simulated. For each case, the general morphological response in shore-normal and shore-parallel directions was presented. Numerical results showed that the ${\kappa}-{\varepsilon}$ and H-LES closure models yield similar results that are in better agreement with existing morphodynamic observations than the results of the other turbulence models. The simulations showed that wave forcing drives a sediment circulation pattern that results in bar and berm formation. However, together with wave forcing, tides modulate the predicted nearshore sediment dynamics. The combination of tides and wave action has a notable effect on longshore suspended sediment transport fluxes, relative to wave action alone. The model's ability to predict sediment transport under propagation of obliquely incident wave conditions underscores its potential for understanding the evolution of beach morphology at field scale. For example, the results of the model confirmed that the wave characteristics have a considerable effect on the cumulative erosion/deposition, cross-shore distribution of longshore sediment transport and transport rate across and along the beach face. In addition, for the same type of oceanic forcing, the beach morphology exhibits different erosive characteristics depending on grain size (e.g., foreshore profile evolution is erosive or accretive on fine or coarse sand beaches, respectively). Decreasing wave height increases the proportion of onshore to offshore fluxes, almost reaching a neutral net balance. The sediment movement increases with wave height, which is the dominant factor controlling the beach face shape.

Dielectric Waveguide Filters Design Embedded in PCB Substrates using Via Fence at Millimeter-Wave (밀리미터파 대역에서 Via Fence를 이용한 PCB 기판용 유전체 도파관 필터 설계)

  • 김봉수;이재욱;김광선;강민수;송명선
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.1
    • /
    • pp.73-80
    • /
    • 2004
  • In this paper, the implementation and embedding method of the existing air-filled waveguide-filters at millimeter-wave on general PCB substrate is introduced by systematically inserting the vias inside waveguide and mathematically manipulating the simple equations obtained ken the classical circular-post waveguide filter design. All the metal structures placed vertically such as side wall fur perfect ground plane and circular-post for signal control in the air-filled WR-22 waveguide are replaced with several types of via for constructing the bandpass-filter. Side wall and poles inside waveguide are realized by placing a series array of via and tuning the via diameter. The lengths of x, y, z axis are reduced in proportion to root square of employed substrate dielectric constant and especially the length of z axis can be more reduced due to the characteristics of the wave propagation. Because the mass production on PCB is possible without fabricating a large-scaled metal waveguide of WR-22 as input/output ports at millimeter-wave regime, the manufacturing cost is reduced considerably. Finally, when using multilayer process like LTCC for small-sized module, it is one of advantages to use only one layer f3r the filter fabrication. To evaluate the validity of this novel technique, order-3 Chebyshev BPF(Bandpass-Filter) centered at 40 GHz-band with a 2.5 % FBW (Fractional Bandwidth) were used. The employed substrate has relative dielectric constant of 2.2 and thickness of 10 mil of Rogers RT/Duroid 5880. Accroding to design and measurement results, a good performance of insertion loss of 2 ㏈ and return loss of -30 ㏈ is achieved at full input/output ports.

Preliminary Design of a Urban Transit Passenger Guidance System Using Congestion Management Model (혼잡관리 모형을 이용한 도시철도 이용객 동선유도시스템 기본설계)

  • Kim, Kwang-Mo;Park, Hee-Won;Kim, Jin-Ho;Park, Yong-Gul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3610-3618
    • /
    • 2015
  • The congestion of railway vehicle and station shows up to 220%. Especially, transfer resistance of passenger increase rapidly by the collision of circulation. So increment of travel time, occurrence of safety accidents act as a factor that inhibits the utilization of urban railway station. In this paper, to improve traveling speed and comfort of urban rail passengers, urban transit passenger guidance system using congestion management model is proposed. The congestion management model that can mitigate a recurring/non-recurring congestion is constructed and the preliminary design of the system (middleware system, control system, guidance drive system) is carried out. Passenger Guidance System is configured by step for changing the external data into a form usable by the algorithm, step to perform the congestion management algorithm using the real-time data and historical data, step to control device based on the value that is calculated by congestion management algorithm, step to drive the device based on the information in the control system and circulation guidance devices. In the future, detail design will be performed based on the preliminary design. A prototype of the various devices according to the station structures and locations will be made. The control module of guidance device will be developed.

POTENTIAL APPLICATIONS FOR NUCLEAR ENERGY BESIDES ELECTRICITY GENERATION: A GLOBAL PERSPECTIVE

  • Gauthier, Jean-Claude;Ballot, Bernard;Lebrun, Jean-Philippe;Lecomte, Michel;Hittner, Dominique;Carre, Frank
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.31-42
    • /
    • 2007
  • Energy supply is increasingly showing up as a major issue for electricity supply, transportation, settlement, and process heat industrial supply including hydrogen production. Nuclear power is part of the solution. For electricity supply, as exemplified in Finland and France, the EPR brings an immediate answer; HTR could bring another solution in some specific cases. For other supply, mostly heat, the HTR brings a solution inaccessible to conventional nuclear power plants for very high or even high temperature. As fossil fuels costs increase and efforts to avoid generation of Greenhouse gases are implemented, a market for nuclear generated process heat will be developed. Following active developments in the 80's, HTR have been put on the back burner up to 5 years ago. Light water reactors are widely dominating the nuclear production field today. However, interest in the HTR technology was renewed in the past few years. Several commercial projects are actively promoted, most of them aiming at electricity production. ANTARES is today AREVA's response to the cogeneration market. It distinguishes itself from other concepts with its indirect cycle design powering a combined cycle power plant. Several reasons support this design choice, one of the most important of which is the design flexibility to adapt readily to combined heat and power applications. From the start, AREVA made the choice of such flexibility with the belief that the HTR market is not so much in competition with LWR in the sole electricity market but in the specific added value market of cogeneration and process heat. In view of the volatility of the costs of fossil fuels, AREVA's choice brings to the large industrial heat applications the fuel cost predictability of nuclear fuel with the efficiency of a high temperature heat source tree of Greenhouse gases emissions. The ANTARES module produces 600 MWth which can be split into the required process heat, the remaining power drives an adapted prorated electric plant. Depending on the process heat temperature and power needs, up to 80% of the nuclear heat is converted into useful power. An important feature of the design is the standardization of the heat source, as independent as possible of the process heat application. This should expedite licensing. The essential conditions for success include: ${\bullet}$ Timely adapted licensing process and regulations, codes and standards for such application and design ${\bullet}$ An industry oriented R&D program to meet the technological challenges making the best use of the international collaboration. Gen IV could be the vector ${\bullet}$ Identification of an end user(or a consortium of) willing to fund a FOAK

Conceptual Design of Automatic Control Algorithm for VMSs (VMS 자동제어 알고리즘 설계)

  • 박은미
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.7
    • /
    • pp.177-183
    • /
    • 2002
  • Current state-of-the-art of VMS control is based upon simple knowledge-based inference engine with message set and each message's priority. And R&Ds of the VMS control are focused on the accurate detection and estimation of traffic condition of the subject roadways. However VMS display itself cannot achieve a desirable traffic allocation among alternative routes in the network In this context, VMS display strategy is the most crucial part in the VMS control. VMS itself has several limitations in its nature. It is generally known that VMS causes overreaction and concentration problems, which may be more serious in urban network than highway network because diversion should be more easily made in urban network. A feedback control algorithm is proposed in this paper to address the above-mentioned issues. It is generally true that feedback control approach requires low computational effort and is less sensitive to models inaccuracy and disturbance uncertainties. Major features of the proposed algorithm are as follows: Firstly, a regulator is designed to attain system optimal traffic allocation among alternative routes for each VMS in the network. Secondly, strategic messages should be prepared to realize the desirable traffic allocation, that is, output of the above regulator. VMS display strategy module is designed in this context. To evaluate Probable control benefit and to detect logical errors of the Proposed feedback algorithm, a offline simulation test is performed using real network in Daejon, Korea.

Development of Indoor Navigation System based on the Augmented Reality in Subway Station (증강현실 기반 지하철 역사의 보행안내 시스템)

  • KIM, Wongil;LIM, Guk hyun;KIM, Hyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.1
    • /
    • pp.43-55
    • /
    • 2019
  • Smart phone based navigation applications are very useful in everyday life. Cost-effective and user friendly navigation can be provided to the user by many applications available in market. Using the Smart phone these navigation applications provide accurate navigation for outdoor locations. But providing an accurate navigation underground space such as subway station is still a challenge. It is hence more convenient and appropriate for mobility services if the visitors could simply view the guidance of the subway station on their mobile phone, wherever and whenever it is needed. This study develops a algorithm for indoor navigation with the help of Augmented Reality(AR) and QR marker code from the entrance to the train platform for users. This indoor navigation uses AR and QR maker codes for two purposes: to provide the user link to the subway station location and to provide the current guidance details to the user. This Smart phone algorithm that uses a smart phone optical tool to decode the QR marker to determine the location information and provide guidance to the AR without indoor Maps. This algorithm also provides a module to guide mobility vulnerable to the Barrier Free route to destination.

Genome sequence of Actinomyces georgiae KHUD_A1 isolated from dental plaque of Korean elderly woman (한국 노인 여성의 치태에서 분리된 Actinomyces georgiae KHUD_A1의 유전체 염기서열 해독)

  • Moon, Ji-Hoi;Shin, Seung-Yun;Hong, Won Young;Jang, Eun-Young;Yang, Seok Bin;Ryu, Jae-In;Lee, Jin-Yong;Lee, Jae-Hyung
    • Korean Journal of Microbiology
    • /
    • v.55 no.1
    • /
    • pp.74-76
    • /
    • 2019
  • Gram-positive anaerobic bacilli Actinomyces spp. commonly reside on mucosal surfaces of the oropharynx, gastrointestinal tract, and urogenital tract. Here, we first report the draft genome sequence of Actinomyces georgiae KHUD_A1, isolated from dental plaque of a Korean elderly woman. The genome is 2,652,059 bp in length and has a GC content of 68.06%. The genome includes 2,242 protein-coding genes, 9 rRNAs, and 64 tRNA. We identified 157 KHUD_A1 strain-specific genes, including genes encoding CPBP family intramembrane metalloprotease, bile acid: sodium symporter family protein, Txe/YoeB family addiction module toxin and Phd/YefM family antitoxin. The sequence information of A. georgiae KHUD_A1 will help understand the general characteristics of the bacterial species and the genome diversity of the genus Actinomyces.

High Purification of Hg2Br2 Powder for Acousto-Optic Tunable Filters Utilizing a PVT Process (PVT공정을 이용한 음향광학 가변 필터용 Hg2Br2 파우더의 고순도 정제)

  • Kim, Tae Hyeon;Lee, Hee Tae;Kwon, In Hoi;Kang, Young-Min;Woo, Shi-Gwan;Jang, Gun-Eik;Cho, Byungjin
    • Korean Journal of Materials Research
    • /
    • v.28 no.12
    • /
    • pp.732-737
    • /
    • 2018
  • We develop a purification process of $Hg_2Br_2$ raw powders using a physical vapor transport(PVT) process, which is essential for the fabrication of a high performance acousto-optic tunable filter(AOTF) module. Specifically, we characterize and compare three $Hg_2Br_2$ powders: $Hg_2Br_2$ raw powder, $Hg_2Br_2$ powder purified under pumping conditions, and $Hg_2Br_2$ powder purified under vacuum sealing. Before and after purification, we characterize the powder samples through X-ray diffraction and X-ray photoelectron spectroscopy. The corresponding results indicate that physical properties of the $Hg_2Br_2$ compound are not damaged even after the purification process. The impurities and concentration in the purified $Hg_2Br_2$ powder are evaluated by inductively coupled plasma-mass spectroscopy. Notably, compared to the sample purified under pumping conditions, the purification process under vacuum sealing results in a higher purity $Hg_2Br_2$ (99.999 %). In addition, when the second vacuum sealing purification process is performed, the remaining impurities are almost removed, giving rise to $Hg_2Br_2$ with ultra-high purity. This high purification process might be possible due to independent control of impurities and $Hg_2Br_2$ materials under the optimized vacuum sealing. Preparation of such a highly purified $Hg_2Br_2$ materials will pave a promising way toward a high-quality $Hg_2Br_2$ single crystal and then high performance AOTF modules.

A Study on 3.0m Low-Altitude Long-Endurance Solar Powered UAV System (3.0m급 저고도 장기체공 태양광 무인기 시스템 연구)

  • Jaebaek Jeong;Taerim Kim;Doyoung Kim;Seokmin Moon;Jae-Sung Bae;Sanghyuk Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.10-17
    • /
    • 2023
  • This paper describes the research and development of a 3.0 m Solar-Powered UAV system for mission flight that is based on the 4.2 m Solar-powered UAV. Both the Solar-Powered UAVs were lightened in weight by applying a composite fuselage and solar charging system. Also, a deep stall landing application and airbag module were installed for usability in mission performance. The flight performance of the Solar-Powered UAV system was verified through flight test. In particular, the 3.0 m Solar-Powered UAV performed continuous flight along the coastline of Jeju Island for 147 km in 3 hours and 50 minutes, and its performance as a mission flight was also confirmed.