• Title/Summary/Keyword: R-mode System

Search Result 439, Processing Time 0.035 seconds

An Experimental Study on the Squeal Noise Generation due to Dynamic Instability of Brake Pad (브레이크 패드의 동적 불안정성에 따른 스퀼 소음 발생 원인의 실험적 연구)

  • Cho, Sangwoon;Lim, Byoungduk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.520-526
    • /
    • 2016
  • Squeal noise is a typical brake noise that is annoying to both passengers and pedestrians. Its frequency range is fairly wide from 1 kHz to 18 kHz, which can be distressful to people. The brake squeal noise occurs due to various mechanisms, such as the mode coupling of the brake system, self-excited vibration, unstable wear, and others. In this study, several parameters involved in the generation of a squeal noise are investigated experimentally by using a brake noise dynamometer. The speed, caliper pressure, torque, and friction coefficient are measured as functions of time on the dynamometer. The contact pressure and temperature distributions of the disc and the pad are also measured by using a thermal imaging camera and a pressure mapping system. As a result of the simultaneous measurement of the friction coefficient and squeal amplitude as functions of the velocity, it is found that the onset of the squeal may be predicted from the ${\mu}-v$ curve. It is also found that a non-uniform contact pressure causes instability and, in turn, a squeal. Based on the analysis results, design modifications of the pad are suggested for improved noise characteristics.

A Study on Application of PRA for Korea Power System in Planning Mode (계통계획측면에서의 우리나라 전력계통에 대한 PRA활용연구)

  • Jeong, S.H.;Kwon, J.J.;Shi, Bo;Park, J.J.;Choi, J.S.;Yoon, Y.T.;Lee, H.C.;Cha, J.M.;Jeon, D.H.;Choi, H.S.;Song, T.Y.;Rju, H.K.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.3-4
    • /
    • 2007
  • 본 논문은 전력계통의 보다 합리적인 신뢰도 운영을 실시하고자 근래 V&R Energy System Research에서 개발한 신뢰도 평가 프로그램인 POM과 EPRI에서 개발한 PRA를 이용하여 우리나라계통에 적용하여 성공적으로 얻은 다양한 사례연구 결과를 소개한다. 여기서는 PRA 프로그램을 우리나라 전력계통의 계획측면에서 활용방안을 모색하기로 하고 다음과 같은 몇 가지 사례연구에 주안점을 두고 실시하였다. 2008년도 우리나라 계통의 병입되는 당진화력 7,8호기의 신설에 따란 계통영향에 대한 신뢰도 지수 비교 순석과 2007년부터 2012년까지의 향후 6년간에 걸친 장기계통계획에 대한 우리나라계통의 신뢰도 지수의 변화를 비교 분석하는 등 계통계획측면에서의 활용방안의 타당성에 관하여 검토하였다.

  • PDF

Active control to reduce the vibration amplitude of the solar honeycomb sandwich panels with CNTRC facesheets using piezoelectric patch sensor and actuator

  • Amini, Amir;Mohammadimehr, M.;Faraji, A.R.
    • Steel and Composite Structures
    • /
    • v.32 no.5
    • /
    • pp.671-686
    • /
    • 2019
  • Active control of solar panels with honeycomb core and carbon nanotube reinforced composite (CNTRC) facesheets for smart structures using piezoelectric patch sensor and actuator to reduce the amplitude of vibration is a lack of the previous study and it is the novelty of this research. Of active control elements are piezoelectric patches which act as sensors and actuators in many systems. Their low power consumption is worth mentioning. Thus, deriving a simple and efficient model of piezoelectric patch's elastic, electrical, and elastoelectric properties would be of much significance. In the present study, first, to reduce vibrations in composite plates reinforced by carbon nanotubes, motion equations were obtained by the extended rule of mixture. Second, to simulate the equations of the system, up to 36 mode shape vectors were considered so that the stress strain behavior of the panel and extent of displacement are thoroughly evaluated. Then, to have a more acceptable analysis, the effects of external disturbances (Aerodynamic forces) and lumped mass are investigated on the stability of the system. Finally, elastoelectric effects are examined in piezoelectric patches. The results of the present research can be used for micro-vibration suppression in satellites such as solar panels, space telescopes, and interferometers and also to optimize active control panel for various applications.

Quench Analysis and Operational Characteristics of the Quench Detection System for the KSTAR PF Superconducting Coils (펄스전류 운전에 따른 KSTAR PF 초전도자석의 퀜치 분석 및 퀜치 검출 시스템 운전 특성)

  • Chu, Y.;Yonekawa, H.;Kim, Y.O.;Park, K.R.;Lee, H.J.;Oh, Y.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.3
    • /
    • pp.20-25
    • /
    • 2009
  • The quench detection system of the KSTAR (Korea Superconducting Tokamak Advanced Research) primarily uses the resistive voltage measurement due to a quench. This method is to detect the resistive voltage generated by a quench, which is continuously maintained above the preset voltage threshold for a given holding time. As the KSTAR PF (Poloidal Field) coils are operated in the pulse current mode, the large inductive voltages are generated. Therefore the voltage threshold and the quench holding time should be determined by considering both the inductive voltages measured during the operation, and the maximum conductor temperature rise through the quench analysis. In this paper, the compensation methods for minimizing the inductive voltages are presented for the KSTAR PF coils. The quench hot spot analysis of the PF coils was carried out by the analytical and numerical methods for determining the proper values of the quench voltage threshold and the allowable quench protection delay time.

Development and Performance Compensation of the Extremely Stable Transceiver System for High Resolution Wideband Active Phased Array Synthetic Aperture Radar (고해상도 능동 위상 배열 영상 레이더를 위한 고안정 송수신 시스템 개발 및 성능 보정 연구)

  • Sung, Jin-Bong;Kim, Se-Young;Lee, Jong-Hwan;Jeon, Byeong-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.573-582
    • /
    • 2010
  • In this paper, X-band transceiver for high resolution wideband SAR systems is designed and fabricated. Also as a technique for enhancing the performance, error compensation algorithm is presented. The transceiver for SAR system is composed of transmitter, receiver, switch matrix and frequency generator. The receiver especially has 2 channel mono-pulse structure for ground moving target indication. The transceiver is able to provide the deramping signal for high resolution mode and select the receive bandwidth for receiving according to the operation mode. The transceiver had over 300 MHz bandwidth in X-band and 13.3 dBm output power which is appropriate to drive the T/R module. The receiver gain and noise figure was 39 dB and 3.96 dB respectively. The receive dynamic range was 30 dB and amplitude imbalance and phase imbalance of I/Q channel was ${\pm}$0.38 dBm and ${\pm}$3.47 degree respectively. The transceiver meets the required electrical performances through the individual tests. This paper shows the pulse error term depending on SAR performance was analyzed and range IRF was enhanced by applying the compensation technique.

Measures for Improvement of RAM Target Value Setting Methods for Submarine Weapon Systems (잠수함 무기체계 RAM 목표 값 설정 방식의 개선방안)

  • Jung, Sun-uk;Shim, Hang-geun;Choi, Myoung-jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.419-427
    • /
    • 2020
  • In the case of large combined weapon systems, such as submarines, the application, and verification of methods of setting the reliability, availability, and maintainability (RAM) target values for conventional weapon systems are limited. Submarines are complex weapon systems with the characteristics of the diversity of operation mode summary and mission profiles (OMS/MP) as well as equipment complexity because they are composed of multiple weapon systems, such as sonar systems and armed systems. Therefore, this study analyzed the development cases of existing weapon systems, i.e., the RAM target value-setting cases, and derived the problems and limitations of the cases to present measures to improve the setting and verification of the ram target values of submarines. In addition, submarines operate around the world and have different operating and maintenance conditions. Therefore, a submarine's ram target values should be set and verified centering on the mission essential equipment and mission critical equipment, instead of all components that constitute weapon systems. This study examined a method to verify the required performance RAM target-value setting, considering the characteristics of submarines as well as the physical performance requirements for the systems and equipment of submarines that must be considered when implementing national defense acquisition projects for submarines.

Ringer's solution detector and transceiver design for efficient manage of patient (효율적인 환자관리를 위한 링거액 감지기 및 송수신기 설계)

  • Song, Je-Ho;Lee, In-Sang;Lee, You-Yub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.45-50
    • /
    • 2016
  • This paper reports a Ringer's solution detector and transceiver design for the efficient management of patients. The ringer's solution detection and transceiver consisted of the main control part, ringer's solution detection part, display and warning light part, wireless transceiver, and power supply part. The light receiving part of the ringer's solution detection part employed TSL260R-LF photodiode; light permeating part, Water-Clear type LED; and wireless transceiver part, the RF wireless data transceiver module, NR-FPCX. As a result of this Ringer's solution detector and transceiver design that can manage the patient efficiently, it was found that when the ringer's solution was detected by the double photodiode, the operating frequency was 11.95kHz; when it was not detected, the number was 9.6kHz. In the ringer's solution receiver, when the ringer's solution was detected, the number was 0. The corresponding unique RF code was displayed when not detected. The power used in the ringer's solution detection part was converted to the Sleep mode to operate under battery save mode. The ringer's solution transceiver can exchange wireless communication approximately within a 700m radius.

Capacity Spectrum Method Based on Inelastic Displacement Ratio (비탄성변위비를 이용한 능력 스펙트럼법)

  • Han, Sang-Whan;Bae, Mun-Su
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.69-80
    • /
    • 2008
  • In this study, improved capacity spectrum method (CSM) is proposed. The method can account for higher mode contribution to the seismic response of MDOF systems. The CSM has been conveniently used for determining maximum roof displacement using both demand spectrum and capacity curve of equivalent SDOF system. Unlike the conventional CSM, the maximum roof displacement is determined without iteration using inelastic displacement ratio and R factor calculated from demand spectrum and capacity curve. Three moment resisting steel frames of 3-, 9- and 20-stories are considered to test the accuracy of the proposed method. Nonlinear response history analysis (NL-RHA) for three frames is also conducted, which is considered as an exact solution. SAC LA 10/50 and 2/50 sets of ground motions are used. Moreover, this study estimates maximum story drift ratios (IDR) using ATC-40 CSM and N2-method and compared with those from the proposed method and NL-RHA. It shows that the proposed CSM estimates the maximum IDR accurately better than the previous methods.

Performance Evaluation of a Bidirectional Piezoelectric Hybrid Actuator (양방향 압전-유압 하이브리드 구동장치의 성능 시험)

  • Jin, Xiaolong;Ha, Ngocsan;Goo, Namseo;Bae, Byungwoon;Kim, Taeheun;Ko, Hanseo;Lee, Changseop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.213-219
    • /
    • 2015
  • Piezoelectric-based hydraulic actuator is a hybrid device consisting of a hydraulic pump driven by piezoelectric stacks that is coupled to a conventional hydraulic cylinder via a set of fast-acting valves. Nowadays, such hybrid actuators are being researched and developed actively in many developed countries by requirement of high performance and compact flight system. In this research, a piezoelectric hybrid actuator has been designed and tested. To achieve bi-directional capabilities in the actuator, solenoid valves were used to control the direction of output fluid. The experimental testing of the actuator in uni-directional and bi-directional modes was performed to examine performance issues related to the solenoid valves. The results showed that the bi-directional performance was slightly lower than uni-directional performance due to air bubble developed in the valve system. A new design to solve the vacuum problem has been proposed to improve the performance of the hybrid actuator.

A Study about Impact of Battery SOC on Fuel Economy of Conventional Diesel Vehicle (배터리 충전상태가 경유자동차 에너지소비효율에 미치는 영향 연구)

  • Kim, Sungwoo;Kim, Kiho;Ha, Jonghan;Kwon, Seokjoo;Seo, Youngho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.480-486
    • /
    • 2016
  • Manufacturers have been applying several technologies that can improve the fuel economy of their cars. The regulated voltage control(RVC) system, is one of those technologies being used in passenger cars. In RVC, the voltage of an alternator is controlled depending on the electrical load demand or battery SOC, although each manufacturer differs from another in terms of detail. RVC can reduce the load of an alternator by consuming the stored energy of a battery and simultaneously generate energy. In this paper, a diesel passenger car equipped with an RVC system was tested under FTP-75 and HWFET modes to evaluate fuel economy as their initial battery SOC(100, 90, 80 and 60 %). The test results showed that the initial SOC affects fuel economy only under the FTP-75 mode. FTP-75 fuel economy of the 60% SOC was 13.2 % lower than the 100 % SOC. Also, the simultaneous consumption of the two energy sources did not appear in 60 % SOC.