Journal of the Korea Society of Computer and Information
/
v.11
no.1
s.39
/
pp.45-53
/
2006
Finite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, Goel-Okumoto and Yamada-Ohba-Osaki model was reviewed, proposes the $x^2$ reliability model, which can capture the increasing nature of the failure occurrence rate per fault. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method, model selection based on SSE, AIC statistics and Kolmogorov distance, for the sake of efficient model, was employed. Analysis of failure using real data set, SYS2(Allen P.Nikora and Michael R.Lyu), for the sake of proposing shape parameter of the $x^2$ distribution using the degree of freedom, was employed. This analysis of failure data compared with the $x^2$ model and the existing model using arithmetic and Laplace trend tests, Kolmogorov test is presented.
The Hawkes process is a point process with self-exciting characteristics. It has been mainly used to describe seismic phenomena in which aftershocks occur due to the main earthquake. Recently, it has been used to explain various phenomena with self-exciting properties, such as the spread of infectious diseases and the spread of news on SNS. The Hawkes process can be flexibly modified according to the characteristics of events by using various types of excitation functions. Since it is difficult to implement a maximum likelihood estimator numerically, estimation methods have been improved until recently. In this paper, the conditional intensity function and excitation function are explained to describe the Hawkes process. Then, existing examples of Hawkes processes used in seismic, epidemiological, criminal, and financial fields are described and estimation methods are introduced. I analyze earthquakes that occurred in gyeongsang-do, Korea from November 2017 to December 2022, using R package ETAS.
Journal of the Institute of Electronics and Information Engineers
/
v.49
no.11
/
pp.159-166
/
2012
There are several ways such as GPS(Global Positioning System) and INS (Inertial Navigation System) to track the location of moving vehicle. The GPS has the advantages of having non-accumulative error even if it brings about errors. In order to obtain the position information, we need to receive at least 3 satellites information. But, the weak point is that GPS is not useful when the 혠 signal is weak or it is in the incommunicable region such as tunnel. In the case of INS, the information of the position and posture of mobile with several Hz~several hundreds Hz data speed is recorded for velocity, direction. INS shows a very precise navigational performance for a short period, but it has the disadvantage of increasing velocity components because of the accumulated error during integration over time. In this paper, sensor fusion algorithm is applied to both of INS and GPS for the position information to overcome the drawbacks. The proposed system gets an accurate position information from experiment using SVD in a non-accessible GPS terrain.
본 논문에서는 한국형 에너지 관리 시스템의 계통 해석용 프로그램을 위한 공통 데이터 모델의 구축에 대해 다루었다. 공통 데이터 모델이란 다양한 어플리케이션이 공유하여 사용할 수 있는 계통 모델의 데이터베이스를 가리키며 본 논문에서는 토폴로지 프로세서(topology processor, TP), 상태추정(state estimator, SE), 급전원 조류계산(dispatcher power flow, DPF), 휴전계획(outage scheduler, OS), 부하 분포계수(bus load distribution factor, BLDF), 송전 손실 민감도 계수(transmission loss sensitivity factor, TLSF) 등을 위한 공통 모델에 대해 다루었다. 공통 모델의 구축을 위해 각 어플리케이션에서 필요한 정보를 수집하여 전력계통의 토폴로지 구조과 계통 설비를 모델링 하였다. 최종적으로 계층적(hierarchy) 구조와 비계층적(non-hierarchy) 구조로 나뉘어진 직접(direct) 및 간접(indirect) 인덱스 코드를 사용하여 데이터로의 빠른 접근이 가능한 실시간 데이터베이스 형태를 제시하였다.
Spectral analysis is used to determine the frequency of time series data. We first determine the frequency of the series through the power spectrum or the periodogram and then calculate the period of a cycle that may exist in a time series. Estimating the frequency using a Bayesian technique has been developed and proven to be useful; however, the Bayesian estimator for the frequency cannot be analytically solved through mathematical equations and may be handled numerically or computationally. In this paper, we make an inference on the Bayesian frequency through both resampling a parameter by Markov chain Monte Carlo (MCMC) methods and resampling data by bootstrap methods for a time series. We take the Korean real estate price index as an example for Bayesian frequency estimation. We have found a difference in the periods between the sale price index and the long term rental price index, but the difference is not statistically significant.
Prangos fedtschenkoi (Regel et Schmalh.) Korovin (Apiaceae) is an endemic species for mountainous Middle Asia, which is both a rare and useful plant. Organic extractions from this species are being used in pharmaceutics and cosmetology. In recent years, P. fedtschenkoi distribution area has considerably decreased, presumably, resulting from human activities such as agriculture, construction works, overgrazing and collection from wild for pharmaceutic purposes. Six populations were found in Uzbekistan and their genetic divergence and differentiation were studied with 10 inter-simple sequence repeat (ISSR) markers, selected out of 101. Totally 166 amplified ISSR fragments (loci) were revealed, of which 164 were polymorphic. Relatively moderate level of polymorphism was found at population level with polymorphic bands ranging from 27.71% to 47.59%. Mean P = 39.05%, $N_a=1.40$, $N_e=1.25$, S.I. = 0.21, and $H_e=0.14$ were revealed for all loci across six populations. AMOVA showed higher variation among populations (62%) than within them (38%). The Bayesian model determined 5 clusters, or genetic groups. The posteriori distribution of the Theta II estimator detected full model identifying high inbreeding, intensified by low gene flow (Nm = 0.3954). Mantel test confined population 6 as distinct cluster corresponding to geographic remoteness (R = 0.5137, $p{\leq}0.005$). Results were used as the bases for developing conserve measures to restore populations.
In simple and multiple regression, there is a difference in the meaning of regression coefficients, and not only are the estimates of regression coefficients different, but they also have different signs. Understanding the relative contribution of explanatory variables in a regression model is an important part of regression analysis. In a standardized regression model, the regression coefficient can be interpreted as the change in the response variable with respect to the standard deviation when the explanatory variable increases by the standard deviation in a situation where the values of the explanatory variables other than the corresponding explanatory variable are fixed. However, the size of the standardized regression coefficient is not a proper measure of the relative importance of each explanatory variable. In this paper, the estimator of the regression coefficient in multiple regression is expressed as a function of the correlation coefficient and the coefficient of determination. Furthermore, it is considered in terms of the effect of an additional explanatory variable and additional increase in the coefficient of determination. We also explore the relationship between estimates of regression coefficients and correlation coefficients in various plots. These results are specifically applied when there are two explanatory variables.
Sangjun Lee;Sungji Moon;Kyungsik Kim;Soseul Sung;Youjin Hong;Woojin Lim;Sue K. Park
Journal of Preventive Medicine and Public Health
/
v.57
no.5
/
pp.499-507
/
2024
Objectives: This study aimed to compare the Delta, Greenland, and Monte Carlo methods for estimating 95% confidence intervals (CIs) of the population-attributable fraction (PAF). The objectives were to identify the optimal method and to determine the influence of primary parameters on PAF calculations. Methods: A dataset was simulated using hypothetical values for primary parameters (population, relative risk [RR], prevalence, and variance of the beta estimator ) involved in PAF calculations. Three methods (Delta, Greenland, and Monte Carlo) were used to estimate the 95% CIs of the PAFs. Perturbation analysis was performed to assess the sensitivity of the PAF to changes in these parameters. An R Shiny application, the "GDM-PAF CI Explorer," was developed to facilitate the analysis and visualization of these computations. Results: No significant differences were observed among the 3 methods when both the RR and p-value were low. The Delta method performed well under conditions of low prevalence or minimal RR, while Greenland's method was effective in scenarios with high prevalence. Meanwhile, the Monte Carlo method calculated 95% CIs of PAFs that were stable overall, though it required intensive computational resources. In a novel approach that utilized perturbation for sensitivity analysis, was identified as the most influential parameter in the estimation of CIs. Conclusions: This study emphasizes the necessity of a careful approach for comparing 95% CI estimation methods for PAFs and selecting the method that best suits the context. It provides practical guidelines to researchers to increase the reliability and accuracy of epidemiological studies.
Obesity usually is defined as the presence of and abnormally amount of adipose tissue. In many epidemiologic study, obesity as a health risk factor has been estimated by Body Mass Index(BMI) in general. This study was conducted to review of body fat percent measured by Bioelectric impedance analyzer as a estimator of obesity in a rural adult population. The study subjects were 421 men and 664 women who reside in the area on the Juam lake. They were sampled by multistage cluster sampling. Their mean age was 59 years old. Body fat percent increased with age, but BMI decreased with age in this study. Body fat percent was more larger at female and elder on the same BMI. The correlation coefficient between with body fat percent and body mass index was low (r=0.4737). Body fat percent was explained by not only BMI but also sex and age $(r^2=0.63)$. The result suggested that it is inadequate for BMI only to estimate obesity about elderly person who reside in the rural community. The relation of body fat percent and body mass index of this study agreed with the preceding know-ledges and studies in general.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.10
no.5
/
pp.372-379
/
2017
Software reliability factor during the software development process is elementary. Case of the infinite failure NHPP for identifying software failure, the occurrence rates per fault (hazard function) have the characteristic point that is constant, increases and decreases. In this paper, we propose a reliability model using the chi - square distribution which depends on the degree of freedom that represents the application efficiency of software reliability. Algorithm to estimate the parameters used to the maximum likelihood estimator and bisection method, a model selection based on the mean square error (MSE) and coefficient of determination($R^2$), for the sake of the efficient model, were employed. For the reliability model using the proposed degree of freedom of the chi - square distribution, the failure analysis using the actual failure interval data was applied. Fault data analysis is compared with the intensity function using the degree of freedom of the chi - square distribution. For the insurance about the reliability of a data, the Laplace trend test was employed. In this study, the chi-square distribution model depends on the degree of freedom, is also efficient about reliability because have the coefficient of determination is 90% or more, in the ground of the basic model, can used as a applied model. From this paper, the software development designer must be applied life distribution by the applied basic knowledge of the software to confirm failure modes which may be applied.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.