지구 관측 시스템(EOSDIS)나 많은 수의 클라이언트를 추적하는 이동전화 서비스 등 많은 응용에서는 지속적으로 생겨나는 대량의 복잡한 데이타들을 보관하고 인덱싱하는 것이 매우 어려운 일이다. 다차원 데이타를 효과적으로 관리하기 위해 R-tree에 기반 한 인덱스 구조가 널리 사용되어 왔다. 본 논문에서는 빠른 데이타 생성 속도를 따라잡으면서 대량 삽입을 통해 R-tree를 관리할 수 있는 seeded clustering이라는 확장성 있는 기법을 제안한다. 이 기법에서는 삽입할 대상 R-tree의 상위 k레벨의 구조를 활용하여 시드 트리를 만들어 삽입 데이타를 분류해 클러스터를 생성한다. 그리고 각 클러스터로부터 삽입 R-tree를 생성하고 이를 대상 R-tree에 한 번에 하나씩 삽입한다. 논문에서는 자세한 알고리즘과 함에 다양한 실험 결과를 보여준다. 실험 결과를 통해 seeded clustering을 이용한 대량 삽입이 기존의 대량 삽입 기법들과 비교해 삽입이나 질의 처리 모두에서 우수함을 알 수 있다.
공간 색인구조는 공간 데이터를 효율적으로 관리하기 위한 도구로써, GIS와 같은 공간 데이터베이스의 성능을 결정하는 중요한 요소라 하겠다. 대부분의 응용분야에서 공간 데이터베이스는 보조기억장치에 저장된 방대한 양의 공간데이터 처리를 요구하므로 디스크 접근의 수를 줄이는 것이 전체 데이터베이스의 성능을 향상시키는데 중요한 요소이다. 이 논문에서는 SMR-tree라는 공간색인구조의 여러 응용분야에서 활용 가능성을 기존의 색인구조들과의 비교를 통해 확인한다. SMR-tree는 R-tree 계열의 구조로써 기존의 R-tree계열의 구조들과 동일한 노드의 형태를 가지고 있으나, 여러 개의 data space를 사용하여 data object를 배분함으로써 $R^{+}-tree$의 말단노드 내에 존재하는 잉여공간을 제거하면서 R-tree의 단점인 색인노드들 사이에 중첩을 허용치 않는다. SMR-tree의 성능은 여러 종류의 테스트 데이터(VLSI layout data, Tiger/Line file data)를 사용하여 R-tree, $R^{+}-tree,\;R^{\ast}-tree$와 비교된다. SMR-tree는 높은 공간 활용도와 다른 색인구조에 비해 빠른 질의 성능을 보임으로써 GIS와 같은 공간 데이터베이스를 위한 효율적인 색인구조로 사용이 될 것으로 기대된다.
Feature-based similarity retrieval has become an important research issue in multimedia database systems. The features of multimedia data are useful for discriminating between multimedia objects (e 'g', documents, images, video, music score, etc.). For example, images are represented by their color histograms, texture vectors, and shape descriptors, and are usually high-dimensional data. The performance of conventional multidimensional data structures(e'g', R- Tree family, K-D-B tree, grid file, TV-tree) tends to deteriorate as the number of dimensions of feature vectors increases. The R*-tree is the most successful variant of the R-tree. In this paper, we propose a SOM-based R*-tree as a new indexing method for high-dimensional feature vectors.The SOM-based R*-tree combines SOM and R*-tree to achieve search performance more scalable to high dimensionalities. Self-Organizing Maps (SOMs) provide mapping from high-dimensional feature vectors onto a two dimensional space. The mapping preserves the topology of the feature vectors. The map is called a topological of the feature map, and preserves the mutual relationship (similarity) in the feature spaces of input data, clustering mutually similar feature vectors in neighboring nodes. Each node of the topological feature map holds a codebook vector. A best-matching-image-list. (BMIL) holds similar images that are closest to each codebook vector. In a topological feature map, there are empty nodes in which no image is classified. When we build an R*-tree, we use codebook vectors of topological feature map which eliminates the empty nodes that cause unnecessary disk access and degrade retrieval performance. We experimentally compare the retrieval time cost of a SOM-based R*-tree with that of an SOM and an R*-tree using color feature vectors extracted from 40, 000 images. The result show that the SOM-based R*-tree outperforms both the SOM and R*-tree due to the reduction of the number of nodes required to build R*-tree and retrieval time cost.
이동체 데이터베이스는 연속적으로 이동하는 이동체의 위치와 궤적을 검색하기 위한 데이터베이스 질의를 효과적으로 처리해야 한다. 질의 처리의 성능 향상을 위하여, 연속적으로 이동하는 이동체를 위한 효과적인 색인 기법이 필요하다. 3D R-tree와 TB-tree는 현재 위치에 대한 영역 질의를 처리할 수 없다. 현재와 과거 위치에 대한 영역 질의를 처리하기 위하여, 기존의 3D R-tree를 태그 now를 가지도록 수정하였다. 대부분의 시공간 색인 구조들은 이동체의 과거 위치에 대한 영역 질의를 효과적으로 처리할 수 없다. 이와 같은 쟁점을 설명하기 위하여 기존의 3D R-tree를 기반으로 하는 TA3DR-tree이라 불리는 색인 방법을 제안한다. TA3DR-tree는 기존의 3D R-tree와 TB-tree와의 성능 평가의 우수한 성능 결과를 보였다.
공간 데이터베이스에서 사용되는 데이터는 그 양이 방대하고 복잡하여 이를 효율적으로 저장, 관리하는 색인이 필요하다. 여러 공간 색인 방법들 중에서 R-tree는 삽입과 삭제가 빈번히 발생하는 동적인 환경에서 효율적인 질의 성능을 보이는 것으로 알려져 있다. R-tree는 삽입되는 데이터의 순서에 따라 트리의 구조가 달라질 수 있는데, 주어진 데이터가 수정이 자주 발생하지 않는다며 데이터 입력 순서를 결정하여 질의 성능이 가장 좋은 트리를 구성할 수 있다. 본 논문에서는 데이터가 자주 수정되지 않는 환경에서 노드간의 중첩을 가장 최소화 할 수 있는 데이터 입력 순서를 결정하기 위해 클러스터링을 이용한 새로운 방법인 CSR-tree를 제안하고자 한다. CSR-tree는 일반 R-tree와 hilbert packed R-tree 방법보다 향상된 질의 성능을 보인다.
대표적인 트리 기반 공간 인덱스 구조는 크게 R-Tree와 같은 데이타 분할 기반 인덱스 구조와 KD-Tree와 같은 공간 분할 기반 인덱스 구조로 구분되며, 최근에는 이들의 장점을 결합한 하이브리드 인덱스 구조에 대한 연구가 활발히 진행되고 있다. 그러나, 기존 연구에서는 공간 객체가 삽입되는 노드의 분할 경계 확장이 다른 이웃 노드에 연쇄적으로 전파되어 노드간 겹침이 증가하고 질의 처리 비용이 높아지는 문제가 있다. 본 논문에서는 이러한 문제를 해결하기 위하여 효율적인 질의 처리를 위한 하이브리드 인덱스 구조인 SQR-Tree를 제시한다. SQR-Tree는 크기를 갖는 공간 객체 처리에 적합하도록 Quad-Tree를 확장한 SQ-Tree(Spatial Quad-Tree)와 SQ-Tree의 리프 노드마다 연계되어 실제로 공간 객체를 저장하는 R-Tree가 결합된 인덱스 구조이다. SQR-Tree는 노드마다 하위 노드를 포함하는 MBR을 가지고 있기 때문에 노드의 분할 경계 확장이 독립적으로 이루어지도록 하여 노드간 겹침을 줄였다. 그리고 SQR-Tree에서 공간 객체는 분할된 데이타 공간마다 존재하는 여러 R-Tree에 분산 저장되며 SQ-Tree가 분할된 데이타 공간을 식별하는 기능을 수행한다. 따라서 공간 질의 처리시 질의 영역에 해당하는 R-Tree만 접근하면 되기 때문에 질의 처리 비용을 줄일 수 있다. 마지막으로 실험을 통해 SQR-Tree의 우수성을 입증하였다.
To index the object's trajectory is an important aspect in moving object database management. This paper implements an optimizing index structure named Rend 3D R-tree based on 3D R-Tree. This paper demonstrates the time period update method to reconstruct the MBR for the moving objects in order to decrease the dead space that is produced in the closed time dimension of the 3D R-tree, then a rend method is introduced for indexing both current data and history data. The result of experiments illustrates that given methods outperforms 3D R-Tree and LUR tree in query processes.
심전도 질환 데이터는 일반적으로 분류기를 사용한 실험이 많다. 심전도 신호는 QRS-Complex와 R-R interval을 추출하는 경우가 많은데 본 실험에서는 R-R interval을 추출하여 실험하였다. 심전도 데이터의 분류기 실험은 일반적으로 SVM(Support Vector Machine)과 MLP(Multilayer Perceptron) 분류기로 수행되지만 본 실험은 정확도 향상을 위해 Random Forest 분류기 알고리즘 중 Decision Tree를 Best-First Decision Tree(B-F Tree)로 수정하여 실험하였다. 그리고 정확도 비교분석을 위해 SVM, MLP, RBF(Radial Basic Function) Network와 Decision Tree 분류기 실험을 같이 수행하였고, 동일한 데이터와 간격으로 실험한 타 논문의 결과와 비교해보았다. 수정한 Random Forest 분류기의 정확도를 다른 네 개의 분류기와 타 논문의 실험과 비교해보니 정확도 부분에서는 Random Forest가 가장 우수하였다. 본 실험의 전처리 과정은 대역통과 필터(Band-pass filter)를 사용하여 R-R interval을 추출하였는데 향후에는 정확한 간격을 추출하기 위한 필터의 연구가 사려된다.
Journal of Information Technology Applications and Management
/
제12권1호
/
pp.111-123
/
2005
Many indexing methods were proposed so that process moving object efficiently. Among them, indexing methods like the 3D R-tree treat temporal and spatial domain as the same. Actually, however. both domain had better process separately because of difference in character and unit. Especially in this paper we deal with limited region such as indoor environment since spatial domain is limited but temporal domain is grown. In this paper we present a novel indexing structure, namely STS-tree(Separation of Time and Space tree). based on limited region. STS-tree is a hybrid tree structure which consists of R-tree and one-dimensional TB-tree. The R-tree component indexes static object and spatial information such as topography of the space. The TB-tree component indexes moving object and temporal information.
본 연구에서는 3차원 지상 레이저 스캐너로부터 취득된 대용량 포인트 클라우드로부터 효과적인 포인트 탐색을 수행하기 위한 인덱싱 방법으로서 3D R-tree와 옥트리를 비교하였다. 포인트 클라우드의 각 포인트로부터 일정 거리 이내의 포인트를 조회하는 방식으로 탐색을 수행하였으며, 탐색 시간 및 메모리 사용량을 측정하였다. 실제 건물과 석탑을 대상으로 취득된 포인트 클라우드에 적용한 결과, 옥트리는 3D R-tree에 비하여 생성 및 탐색 속도가 우수하며 3D R-tree는 보다 메모리 효율적임을 확인할 수 있었다. 3D R-tree는 인덱스 용량과 리프 용량이, 옥트리는 계층 수가 탐색 성능을 좌우함을 확인하였으며, 주어진 자료에 대한 최적의 수치를 도출할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.