
Rend 3D R-tree : 3D R-tree

*, **,
*
**

e-mail : renxiangchao_2006@yahoo.com, , rim@sunmoon.ac.kr, njy1204@sunmoon.ac.kr,
leeko@sunmoon.ac.kr

Rend 3D R-tree: An Improved Index Structure in Moving Object
Database Based on 3D R-tree

Ren XiangChao*, Kee-Wook Rim**, Nam Ji Yeun**,Lee KyungOh**
*Dept. of Automation, Chongqing University of Posts and Telecommunication
**Dept. of Computer Science, Sun Moon University

Abstract

To index the object’s trajectory is an important aspect in moving object database management. This paper implements an
optimizing index structure named Rend 3D R-tree based on 3D R-Tree. This paper demonstrates the time period update
method to reconstruct the MBR for the moving objects in order to decrease the dead space that is produced in the closed
time dimension of the 3D R-tree, then a rend method is introduced for indexing both current data and history data. The result
of experiments illustrates that given methods outperforms 3D R-Tree and LUR tree in query processes.
Keywords: moving object database, 3D R-Tree, spatiotemporal, indexing

1. Introduction

With the development of the related technologies such as
mobile computing, Global Positioning System, GIS, etc.,
database needs store and manage large quantities of physical
objects with spatiotemporal information in physical world,
and their spatial location or scope will change continuously
with time flies, which brings a big challenge to the
spatiotemporal database. The application of spatiotemporal
database spreads over many domains as transportation (such
as vehicle supervision), weather monitoring, military, LBS
etc. In such applications, a dynamic index is often built to
improve the evaluation of spatial queries.

Much work has been recently conducted in the domain of
indexing spatiotemporal data and several spatiotemporal
access methods have been proposed, which can be separated
into two major categories: those indexing the past positions
of moving objects(3D R-Tree [1], HR-Tree [2], TB-Tree,
STR-Tree [3]), and those indexing the current and predicted
movement of objects [4].The typical history query that is
supported by the server terminal is district query ,which
include time query that is “ find all mobile objects passing
through district S at time t, and window query that is find all
mobile objects passing through district S between time [t1,t2].

The 3D R-tree [1] considers time as an extra dimension
and represents 2D rectangles with time intervals as three-
dimensional boxes. This tree can be the original R-tree or
any of its variants [7]. 3D R-tree can manages history
information effectively and has a better performance on

window query than other index structure. However, the
original 3D R-tree can only index history data (offline data)
that is the data in condition of interval value of data item are
confined and require data to be closed in time dimension.
The 3D R-tree avoids of the differences of spatial query and
temporal query; when object keep stationary in some time
interval, it will format a cube, but for the stationed in a long
time, the appearance of many cubes will make the indexing
quality drop heavily. This paper attempts to reconstruct the
MBR (minimum bounding rectangle) to improve the
indexing quality and rend the 3D R-tree in order to index the
current data.

2. Related work

The research target of moving object database is to extent
database technique and makes it not only be used to represent
various moving objects in database, but also used to do the
query processing related to object position. Nowadays,
among amount of indexing structures supporting query
processing for object position, 3D R-tree as one member of
R-tree family has a simple structure and has a good
performance for spatial query.
 The problems of dead space and overlap exist in almost
all indexing structure based on classic R-tree family,
proposed by [6]. How to decrease or eliminate them as much
as possible is the key. For 3D R-tree, its indexing key is
MBR(minimum bounding rectangle) of data ,if the time
interval [t1, t2] gets a much longer, the data MBR will gets
longer too ,then the dead space will increase much more,

제30회 한국정보처리학회 추계학술발표대회 논문집 제15권 제2호 (2008. 11)

878

which obviously makes a bad effective on its indexing
performance.
3D R-tree employs a unified indexing structure in which only
one spatial data structure needs to be implemented and the
factor of time is eliminated because spatio-temporal
operators are implemented as three-dimensional queries and
retrieved using the three-dimensional index. But at the mean
time, the simple combination for 1D and 2D area and the
closed time characteristic of this mechanism result to the 3D
R-tree can only used to index the history query.

Figure 1.a unified indexing scheme of actors. [1]
The 3D R tree approach assumes that both ends of the inte

rval [t1, t2] of each rectangle are known and fixed. If the end t
ime t2 is not now, this approach does not work well. If we wa
nt make the 3D R tree can index the current data, it involves
a time now, what is now, refer to [5]. Simplify, we can see no
w as a near future. In this paper, I divide the time range into t
wo parts, one is [t1, now], the terminal time value is unknown
; the other is [now, t2], the terminal time value is known.

In order to support the 3D R-tree to index the active data,
2+3 R tree is one possible solution, the 2+3 R tree approach
is a variation of an original idea proposed in [9], as long as
the end time t2 of an object interval is unknown, it is indexed
by the front 2D R-tree, keeping the start time t1 of its
position along with its id. When t2 becomes known, then:

1. The associated entry is migrated from the 2D R-tree to
the 3D R-tree.

2. A new entry storing the updated current location is
inserted into the 2D R-tree.

However, the above method requires both trees need to be
searched, which increase the overhead and insert cost.

3. The implementation

In this paper, a time period update method is introduced to
decrease the dead space. Fist of all, some conditions are the
prerequisite:
Assumption 1: The moving objects will move in a fixed
space.
Assumption 2: The data update is processed through a stable
update cycle, which means every moving step of the objects
just changes according to the time update cycle. This also
means the moving object has the same speed when moving.

Compared with rational database, moving database has a
large number of data because it continuously accumulates
data according to time update. So the object is spatiotemporal
object.
Definition 1: object is a spatiotemporal object that changes
(still or move) according to time update and marked only by
a series (id, t, c, x, y). Id is the label code of moving object; t

is the time that data produce; c is the MBR of the object in
indexing structure; x, y is the space coordinates.

In this paper, a rend method that combine the two trees
into a whole index structure is introduced, the later one is
used to index the current data, the front one uses improved
3D R-tree for indexing the history data. The current data and
history data are stored independently. When some a
spatiotemporal data become history data, transfer [t1, now] to
[t1, t2], then processing form the front tree to later tree, and
for the insert processing, if the node that is chosen to insert
overflows, considering the split in the time axis priority.

Indexing for 3D R-tree, the stored data item is trajectory
item, which is a segment that formatted by the moving of
object between [t1, t2], if the interval time between the t1 and
t2 is too long, the dead space will increase heavily, in order to
solve this problem As the prerequisite given above, assuming
a moving object O (id, t, c, x, y), its basic update cycle is T,
It updated at time t2 to get the point p1(id,t1,c1,x1,y1), then
updated again to reach the point p2(id,t2,c2,x2,y2), in
traditional 3D R-tree method, we can get the two segment
op1 and op2 and the corresponding MBR, R1 and R2. Now
that the velocity is stable and has a basic update cycle T, so
the basic update number is n1= t1/T and n2= (t2-t1)/T; Then
we can get N= (n1+n2) numbers update spot and will
reconstruct MBR of every basic update spot. The
demonstration is showed in following figure 1 and figure 2:
Assume n1=1; n2=2; leaf node data capacity of the
established 3D R-tree is 2

Figure 2: the original MBR construct method of 3D R-tree

Figure 3: construct MBR of leaf node at update period T

Compare with the two conditions above, we can see that
the rectified method can reduce unnecessary search which
comes from dead space when the query is issued. However,
at the same time, the method that uses sampling point to
construct MBR to replace of realistic trajectory will add the
overhead for the query processing, in the next part, Rend 3D
R-tree’s data structure will be introduced and combined with
front method, at the end , we will give the compared
experiment result.

The basic idea of Rend 3D R-tree is to employs the rend
method that constructs a combined indexing mechanism. As
we all know, there are two kinds of spatiotemporal data
items: active data and history data. Here, we will rend the

제30회 한국정보처리학회 추계학술발표대회 논문집 제15권 제2호 (2008. 11)

879

original 3D R-tree to two trees; R1 tree that remains the
characteristics of 3D R-tree is used to index the history; the
other tree R2 is used to index store active data. The R2 tree
data structure is denoted by series (id, c, t1, t2), t2=now; R1
tree data structure is also denoted by series (id, c, t1, t2,), but
the value of t2 is known, c is the MBB of the corresponding
leaf node of moving object.

According to assumption 2, the data of moving objects
updates every basic period time T, so for the update of the
time interval [t1, now], we just transfer now to defined value
t2=t1+ T (N is positive integer). Update current data item
in R2, and then reinsert the new data item into the index
structure R1.

Update algorithm:
Step 1: find the leaf node including moving point o_id from
R1 tree, if not find, end. // using the same algorithm of R-
tree//
Step 2: set now=t2; t1=now; t2=t1. //after time period T,
update the new data item in R2//.
Step 3: implement the reinsert R1 algorithm and reinsert R2
algorithm.
Step 4: if update, repeat step1 at the time “now”, else if, finis
h.

Figure 4: update algorithm

We need twice reinsert in this process. The insertion
operation probably involves the issue of split. When the
MBB of nodes changes, May including root and leaf nodes,
split occurs. Here, a problem is existed, the original split
algorithm of 3D R-tree often causes the low page utilization
of old node after splitting because of biasing to insert into the
new node. We will demonstrate the rent method that split the
old node to two nodes distract in different trees R1 and R2
along time axis, then improve the index ability.

Reinsert algorithm (R1, R2)
Step 1: if the number of root node is less than 2, transfer into
step 3
Step 2: at time slice find the leaf node into which the
object is inserted.// the same sub-tree choose algorithm of R-
tree.//
Step 3: if node overflows, rend the node into two new nodes
at update moment, the front for R1; the later for R2.
Step 4:twice reinsert operations at tend and tend

Figure 5: reinsert algorithm

Assume that we have established a combing Rent 3D R-
tree structure and N=1. R1 is used in [t1,tend-], R2 is used
in [tend- If data updates at tend after basic period T,
we will reinsert the value of tend to the end part of the R1
and the value of the point tend+ to for R2. At the
mean time, delete the moving point that reaches terminal spot
from R2.

4. Experiment evaluation

In this section, we will compare the rent 3D R-tree with 3D
R-tree for history query and LUR (lazy-update) R-tree for
current query. LUR tree is used to index the current position
of moving objects and doesn’t store the history data, once
updating, it deletes the old value as well as insert the new
value. We used GSTD [8] generator to generate the datasets
for the experiments. The initial distribution of moving
objects is Gaussian and the movement of objects is random.
The datasets contain regions with density 0.2. All the
experiments were performed on a Pentium IV 2G machine
with 512MB memory, running Windows XP. For all
experiments, the disk page size is set to 2k bytes.

Experiment processing is following: now that we have a
basic update period T, we tested the 10 update point [T, 10T],
and set T=10s; the spatial universe is a square that consists
N=10,000 simulated points. For the history query, at every
update time, produce two query asking time slice query and
window query randomly, both of them have the same
probability. Set the number of timestamp included in time
interval to 1.From figure 3, we can see that as the update
interval time get longer, the leaf node dead of 3D R-tree
increase respondent, then it processes a large number of
ineffective compare computing to judge whether there are
overlapping or not, which result to the increment of I/O
access. Compared with LUR-tree for current query, as the
update time moves, once the object get out of its MBR, MBR
expands to contain it in the condition of short distance

제30회 한국정보처리학회 추계학술발표대회 논문집 제15권 제2호 (2008. 11)

880

between them or delete-insert operation, which result to
LUR-tree will gradually get the worse performance, our
experiment proved this and at the later part of updated time,
Rend 3D R-tree has a better performance.

Figure 3.comparison of Rend 3D R tree and 3D R-tree for
history query

Figure 4.comparision of Rend 3D R-tree and LUR-
tree for current query

5. Conclusions

This paper has proposed a combined index structure Rend
3D R-tree based classic 3D R-tree. In the prerequisite
condition of the periodic update, we give a solution to
decrease the much more dead space if interval time is too
long for original 3D R-tree. A rend method has been
introduced to establish the combined index structure to index
both history and current position. The experiment proved that
the proposed method had a better performance for history
query with original 3D R-tree as well as current query
compared with LUR-tree.

Acknowledgments:
This research was supported by the MIC (Ministry of

Information and Communication), Korea, under the ITRC
(Information Technology Research Center) support program
supervised by the IITA (Institute of Information Technology
Advancement) (IITA-2007-C1090-0701-0020)

References

[1] Theodoridis, Y., Vazirgiannis, M., and Sellis, T.: Spatio-
temporal indexing for Large Multimedia Applications. In
Proceedings of the 3rd IEEE Conference on Multimedia
Computing and Systems, Hiroshima, Japan, 1996
[2] Nascimento, M.A., and Silva, J.R.O.: Towards historical
R-trees. In Proceedings of the 13thACM Symposium on
Applied Computing (ACM-SAC'98), 1998
[3] Pfoser D., Jensen C.S., and Theodoridis, Y.: Novel

Approaches to the Indexing of Moving Object Trajectories.
In Proceedings of the 26th International Conference on Very
Large Databases, Cairo, Egypt, 2000.
[4] Saltiness, S., Jensen, C.S., Leutenegger, S.T., and Lopez,
M.A.: Indexing the Positions of Continuously Moving
Objects. TIMECENTER Technical Report, TR-44, 1999
[5] J. Clifford, C.E. Dyresom, T. Isakowitz, C.S. Jensen and
R.T. Snodgrass: “On the Semantics of ‘now’”, ACM
Transactions on Database Systems, Vol.22, No.2, pp.171-214,
1997.
[6] Guttman, A. (1984) R-tree: A dynamic index structure for
spatial searching. In SIGMOD ’84, Proceedings of the ACM
SIGMOD Conference. ACM Press.
[7] R-trees Have Grown EverywhereYANNIS
MANOLOPOULOS, ALEXANDROS
NANOPOULOS ,APOSTOLOS N. PAPADOPOULOS
Aristotle University of Thessaloniki, Greece and YANNIS
THEODORIDIS University of Piraeus, Greece ACM
Computing Surveys, Vol. V, No. N, Month 20YY
[8]GIST: a generalized search tree for secondary storage

[CP/OL], http://gist.cs.berkeley.edu/gist.html.
[9]. A. Kumar, V.J. Tsotras and C. Faloutsos: “Designing
Access Methods for Bitemporal Databases”, IEEE
Transactions on Knowledge and Data Engineering, Vol.10,
No.1, pp.1-20, 1998.

제30회 한국정보처리학회 추계학술발표대회 논문집 제15권 제2호 (2008. 11)

881

