• Title/Summary/Keyword: R-Learning Environment

Search Result 177, Processing Time 0.025 seconds

Automatic Attendance Check System Using Face Recognition In A Masked Environment (마스크를 착용한 환경에서 얼굴 인식을 활용한 자동 출석체크 시스템)

  • Kim, Young-Kook;Lim, Chae-Hyun;Son, Min-Ji;Kim, Myung-Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.23-26
    • /
    • 2020
  • 본 논문에서는 CCTV를 통해 얻은 영상에서 얼굴을 인식하여 자동으로 출석 여부를 체크하는 시스템을 소개한다. 이 시스템은 CNN을 바탕으로 RetinaFace 모델을 사용하여 얼굴을 탐지하고, 탐지된 얼굴을 ArcFace 모델로 R512의 목표 공간으로 임베딩한다. 기존 데이터베이스에 등록된 얼굴과 CCTV를 통해 얻은 얼굴들의 임베딩 벡터 사이의 Angular Cosine Distance를 측정하여 동일 인물인지 판단하는 매칭 알고리즘을 제안한다. 실험을 통해 두 모델을 동시에 사용할 최적의 환경을 파악하고, 마스크 착용으로 얼굴의 하단부가 가려지는 폐색 문제에 더욱 효과적으로 대응하여 매칭 성능을 높이는 방법을 제안한다.

  • PDF

Study on the teaching efficiency and satisfaction levels of clinical practice instructors during clinical practice training for some dental hygienists and students (일부 치위생과 학생들의 임상실습교육 시 임상실습지도자의 교수효율성 및 임상실습만족도에 관한 연구)

  • Oh, Hey-Seung
    • Journal of Korean society of Dental Hygiene
    • /
    • v.13 no.5
    • /
    • pp.777-786
    • /
    • 2013
  • Objectives : The purpose of the is to investigate the teaching effectiveness of clinical practice instructors and the satisfaction level of dental hygiene majoring students in clinical practice training. Methods : Subjects were second and third grade 480 dental hygiene majoring students in Seoul and Gangwondo. Except 48 incomplete answers, 438 data were analyzed. Questionnaire consisted of general characteristics, teaching of clinical practice instructors, educational content, organization al skills, leadership, learning environment, evaluation skills and clinical practice satisfaction level. Results : 1. A strong positive correlation (r = 0.832) was found between teaching effectiveness and clinical practice satisfaction. A positive correlation more than 0.50 was found between the clinical practice satisfaction, encouragement and support for teaching effectiveness, educational contents, and leadership. 2. There were significant correlations between the encouragement and support (B = 0.209), educational content (B = 0.199), leadership ability (B = 0.257) and ability to create an environment (B = 0.084), evaluation ability (B = 0.083). Conclusions : Teaching effectiveness of the clinical practice instructors had influences on the clinical practice satisfaction. It is necessary to connect clinical practice instructions with satisfaction towards clinical practice to the students.

Intelligent prediction of engineered cementitious composites with limestone calcined clay cement (LC3-ECC) compressive strength based on novel machine learning techniques

  • Enming Li;Ning Zhang;Bin Xi;Vivian WY Tam;Jiajia Wang;Jian Zhou
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.577-594
    • /
    • 2023
  • Engineered cementitious composites with calcined clay limestone cement (LC3-ECC) as a kind of green, low-carbon and high toughness concrete, has recently received significant investigation. However, the complicated relationship between potential influential factors and LC3-ECC compressive strength makes the prediction of LC3-ECC compressive strength difficult. Regarding this, the machine learning-based prediction models for the compressive strength of LC3-ECC concrete is firstly proposed and developed. Models combine three novel meta-heuristic algorithms (golden jackal optimization algorithm, butterfly optimization algorithm and whale optimization algorithm) with support vector regression (SVR) to improve the accuracy of prediction. A new dataset about LC3-ECC compressive strength was integrated based on 156 data from previous studies and used to develop the SVR-based models. Thirteen potential factors affecting the compressive strength of LC3-ECC were comprehensively considered in the model. The results show all hybrid SVR prediction models can reach the Coefficient of determination (R2) above 0.95 for the testing set and 0.97 for the training set. Radar and Taylor plots also show better overall prediction performance of the hybrid SVR models than several traditional machine learning techniques, which confirms the superiority of the three proposed methods. The successful development of this predictive model can provide scientific guidance for LC3-ECC materials and further apply to such low-carbon, sustainable cement-based materials.

Hybrid machine learning with HHO method for estimating ultimate shear strength of both rectangular and circular RC columns

  • Quang-Viet Vu;Van-Thanh Pham;Dai-Nhan Le;Zhengyi Kong;George Papazafeiropoulos;Viet-Ngoc Pham
    • Steel and Composite Structures
    • /
    • v.52 no.2
    • /
    • pp.145-163
    • /
    • 2024
  • This paper presents six novel hybrid machine learning (ML) models that combine support vector machines (SVM), Decision Tree (DT), Random Forest (RF), Gradient Boosting (GB), extreme gradient boosting (XGB), and categorical gradient boosting (CGB) with the Harris Hawks Optimization (HHO) algorithm. These models, namely HHO-SVM, HHO-DT, HHO-RF, HHO-GB, HHO-XGB, and HHO-CGB, are designed to predict the ultimate strength of both rectangular and circular reinforced concrete (RC) columns. The prediction models are established using a comprehensive database consisting of 325 experimental data for rectangular columns and 172 experimental data for circular columns. The ML model hyperparameters are optimized through a combination of cross-validation technique and the HHO. The performance of the hybrid ML models is evaluated and compared using various metrics, ultimately identifying the HHO-CGB model as the top-performing model for predicting the ultimate shear strength of both rectangular and circular RC columns. The mean R-value and mean a20-index are relatively high, reaching 0.991 and 0.959, respectively, while the mean absolute error and root mean square error are low (10.302 kN and 27.954 kN, respectively). Another comparison is conducted with four existing formulas to further validate the efficiency of the proposed HHO-CGB model. The Shapely Additive Explanations method is applied to analyze the contribution of each variable to the output within the HHO-CGB model, providing insights into the local and global influence of variables. The analysis reveals that the depth of the column, length of the column, and axial loading exert the most significant influence on the ultimate shear strength of RC columns. A user-friendly graphical interface tool is then developed based on the HHO-CGB to facilitate practical and cost-effective usage.

Implementation on the evolutionary machine learning approaches for streamflow forecasting: case study in the Seybous River, Algeria (유출예측을 위한 진화적 기계학습 접근법의 구현: 알제리 세이보스 하천의 사례연구)

  • Zakhrouf, Mousaab;Bouchelkia, Hamid;Stamboul, Madani;Kim, Sungwon;Singh, Vijay P.
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.6
    • /
    • pp.395-408
    • /
    • 2020
  • This paper aims to develop and apply three different machine learning approaches (i.e., artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), and wavelet-based neural networks (WNN)) combined with an evolutionary optimization algorithm and the k-fold cross validation for multi-step (days) streamflow forecasting at the catchment located in Algeria, North Africa. The ANN and ANFIS models yielded similar performances, based on four different statistical indices (i.e., root mean squared error (RMSE), Nash-Sutcliffe efficiency (NSE), correlation coefficient (R), and peak flow criteria (PFC)) for training and testing phases. The values of RMSE and PFC for the WNN model (e.g., RMSE = 8.590 ㎥/sec, PFC = 0.252 for (t+1) day, testing phase) were lower than those of ANN (e.g., RMSE = 19.120 ㎥/sec, PFC = 0.446 for (t+1) day, testing phase) and ANFIS (e.g., RMSE = 18.520 ㎥/sec, PFC = 0.444 for (t+1) day, testing phase) models, while the values of NSE and R for WNN model were higher than those of ANNs and ANFIS models. Therefore, the new approach can be a robust tool for multi-step (days) streamflow forecasting in the Seybous River, Algeria.

Satisfaction Analysis of Online Non-face-to-face Classes in the COVID-19 (코로나19 상황에서의 온라인 비대면 수업에 대한 만족도 분석)

  • Jang, Hyon Chol;Roh, Mi Ra;Jeon, Byung Duk
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.519-524
    • /
    • 2021
  • As the COVID-19 situation continued to spread to the local community along with the spread due to influx, each university had to conduct all online classes and partially online classes. The purpose of this study was to investigate the satisfaction of learners with the content and lecture contents by paying attention to online non-face-to-face classes according to the change of the class environment in the Corona 19 situation. Satisfaction survey on online non-face-to-face class major subjects was analyzed using questionnaires from June 1 to June 11, 2021, targeting 2nd and 3rd year students in the Department of Radiology at S University in Daegu. As a result of the study, satisfaction with content and class content was found to be an average of 3.78 ± 0.75 points, and learning satisfaction was found to be an average of 3.00 ± 1.14 points. In addition, when taking online non-face-to-face classes, the correlation between students' class attitude and content and class content satisfaction was the highest (r=0.555, p<0.01), and it was found that there was also a correlation between content and class content satisfaction and learning satisfaction. (r=0.331, p<0.01). I think that satisfaction with non-face-to-face online classes can be improved if the quality of content is improved during non-face-to-face online major classes as well as more active interactions between students and professors.

An Improvement Study on the Hydrological Quantitative Precipitation Forecast (HQPF) for Rainfall Impact Forecasting (호우 영향예보를 위한 수문학적 정량강우예측(HQPF) 개선 연구)

  • Yoon Hu Shin;Sung Min Kim;Yong Keun Jee;Young-Mi Lee;Byung-Sik Kim
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.4
    • /
    • pp.87-98
    • /
    • 2022
  • In recent years, frequent localized heavy rainfalls, which have a lot of rainfall in a short period of time, have been increasingly causing flooding damages. To prevent damage caused by localized heavy rainfalls, Hydrological Quantitative Precipitation Forecast (HQPF) was developed using the Local ENsemble prediction System (LENS) provided by the Korea Meteorological Administration (KMA) and Machine Learning and Probability Matching (PM) techniques using Digital forecast data. HQPF is produced as information on the impact of heavy rainfall to prepare for flooding damage caused by localized heavy rainfalls, but there is a tendency to overestimate the low rainfall intensity. In this study, we improved HQPF by expanding the period of machine learning data, analyzing ensemble techniques, and changing the process of Probability Matching (PM) techniques to improve predictive accuracy and over-predictive propensity of HQPF. In order to evaluate the predictive performance of the improved HQPF, we performed the predictive performance verification on heavy rainfall cases caused by the Changma front from August 27, 2021 to September 3, 2021. We found that the improved HQPF showed a significantly improved prediction accuracy for rainfall below 10 mm, as well as the over-prediction tendency, such as predicting the likelihood of occurrence and rainfall area similar to observation.

Pedestrian Multi-Agent Model in College Town Streets (대학촌 가로의 보행환경 개선을 위한 보행자 멀티에이전트(Pedestrian Multi-Agent) 모델링)

  • Moon, Tae-Heon;Han, Soo-Chel;Sung, Han-Uk;Jeong, Kyeong-Seok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.2
    • /
    • pp.194-205
    • /
    • 2006
  • The purpose of this study is to develop a pedestrian multi-agent model and simulation system using multi-agent theory, which may be utilized as a planning support system for building a comfort and safe environment of pedestrian street. Differing from existing pedestrian models, however, every single pedestrian was regarded as an individual agent in the model. Multiple agents like multiple pedestrians in the street then maintain their own characteristics and respond to surrounding environment. In addition their moving behavior are made by their own decision rules that they have or had acquired through the interactive communications or learning between agents like real world. After verifying the model validation, as the $R^2$ between the predicted value and observed value was up to 0.781, the developed model was applied to Gazwa district within Gyeongsang university village. The simulation system was developed by Flash MX action scripts and the physical environment of the streets was configured with the digital map and ArcGis within computer virtual space. The attribute data of buildings such as type and size of commercial business were collected through the field survey and combined with physical features. Then the effect of the variation of building attractiveness and the occurrence of street events to pedestrian environment were simulated. Through the experiments this study could make suggestions to improve pedestrian environment.

  • PDF

Estimation of TROPOMI-derived Ground-level SO2 Concentrations Using Machine Learning Over East Asia (기계학습을 활용한 동아시아 지역의 TROPOMI 기반 SO2 지상농도 추정)

  • Choi, Hyunyoung;Kang, Yoojin;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.275-290
    • /
    • 2021
  • Sulfur dioxide (SO2) in the atmosphere is mainly generated from anthropogenic emission sources. It forms ultra-fine particulate matter through chemical reaction and has harmful effect on both the environment and human health. In particular, ground-level SO2 concentrations are closely related to human activities. Satellite observations such as TROPOMI (TROPOspheric Monitoring Instrument)-derived column density data can provide spatially continuous monitoring of ground-level SO2 concentrations. This study aims to propose a 2-step residual corrected model to estimate ground-level SO2 concentrations through the synergistic use of satellite data and numerical model output. Random forest machine learning was adopted in the 2-step residual corrected model. The proposed model was evaluated through three cross-validations (i.e., random, spatial and temporal). The results showed that the model produced slopes of 1.14-1.25, R values of 0.55-0.65, and relative root-mean-square-error of 58-63%, which were improved by 10% for slopes and 3% for R and rRMSE when compared to the model without residual correction. The model performance by country was slightly reduced in Japan, often resulting in overestimation, where the sample size was small, and the concentration level was relatively low. The spatial and temporal distributions of SO2 produced by the model agreed with those of the in-situ measurements, especially over Yangtze River Delta in China and Seoul Metropolitan Area in South Korea, which are highly dependent on the characteristics of anthropogenic emission sources. The model proposed in this study can be used for long-term monitoring of ground-level SO2 concentrations on both the spatial and temporal domains.

Deep Learning-based Technology Valuation and Variables Estimation (딥러닝 기반의 기술가치평가와 평가변수 추정)

  • Sung, Tae-Eung;Kim, Min-Seung;Lee, Chan-Ho;Choi, Ji-Hye;Jang, Yong-Ju;Lee, Jeong-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.10
    • /
    • pp.48-58
    • /
    • 2021
  • For securing technology and business competences of companies that is the engine of domestic industrial growth, government-supported policy programs for the creation of commercialization results in various forms such as 『Technology Transaction Market Vitalization』 and 『Technology Finance-based R&D Commercialization Support』 have been carried out since 2014. So far, various studies on technology valuation theories and evaluation variables have been formalized by experts from various fields, and have been utilized in the field of technology commercialization. However, Their practicality has been questioned due to the existing constraint that valuation results are assessed lower than the expectation in the evaluation sector. Even considering that the evaluation results may differ depending on factors such as the corporate situation and investment environment, it is necessary to establish a reference infrastructure to secure the objectivity and reliability of the technology valuation results. In this study, we investigate the evaluation infrastructure built by each institution and examine whether the latest artificial neural networks and deep learning technologies are applicable for performing predictive simulation of technology values based on principal variables, and predicting sales estimates and qualitative evaluation scores in order to embed onto the technology valuation system.