• Title/Summary/Keyword: R-C compensation

Search Result 73, Processing Time 0.031 seconds

Photosynthetic and Growth Responses of Chinese Cabbage to Rising Atmospheric CO2 (대기 중 CO2 농도의 상승에 대한 배추의 광합성과 생장 반응)

  • Oh, Soonja;Son, In-Chang;Wi, Seung Hwan;Song, Eun Young;Koh, Seok Chan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.357-365
    • /
    • 2016
  • The effects of elevated atmospheric $CO_2$ on photosynthesis and growth of Chinese cabbage (Brassica campestris subsp. napus var. pekinensis) were investigated to predict productivity in highland cropping in an environment where $CO_2$ levels are increasing. Vegetative growth, based on fresh weight of the aerial part, and leaf characteristics (number, area, length, and width) of Chinese cabbage grown for 5 weeks, increased significantly under elevated $CO_2$ ($800{\mu}mol{\cdot}mol^{-1}$) compared to ambient $CO_2$ ($400{\mu}mol{\cdot}mol^{-1}$). The photosynthetic rate (A), stomatal conductance ($g_s$), and water use efficiency (WUE) increased, although the transpiration rate (E) decreased, under elevated atmospheric $CO_2$. The photosynthetic light-response parameters, the maximum photosynthetic rate ($A_{max}$) and apparent quantum yield (${\varphi}$), were higher at elevated $CO_2$ than at ambient $CO_2$, while the light compensation point ($Q_{comp}$) was lower at elevated $CO_2$. In particular, the maximum photosynthetic rate ($A_{max}$) was higher at elevated $CO_2$ by 2.2-fold than at ambient $CO_2$. However, the photosynthetic $CO_2$-response parameters such as light respiration rate ($R_p$), maximum Rubisco carboxylation efficiency ($V_{cmax}$), and $CO_2$ compensation point (CCP) were less responsive to elevated $CO_2$ relative to the light-response parameters. The photochemical efficiency parameters ($F_v/F_m$, $F_v/F_o$) of PSII were not significantly affected by elevated $CO_2$, suggesting that elevated atmospheric $CO_2$ will not reduce the photosynthetic efficiency of Chinese cabbage in highland cropping. The optimal temperature for photosynthesis shifted significantly by about $2^{\circ}C$ under elevated $CO_2$. Above the optimal temperature, the photosynthetic rate (A) decreased and the dark respiration rate ($R_d$) increased as the temperature increased. These findings indicate that future increases in $CO_2$ will favor the growth of Chinese cabbage on highland cropping, and its productivity will increase due to the increase in photosynthetic affinity for light rather than $CO_2$.

Preparation of Humidity Sensor Using Novel Photocurable Sulfonated Polyimide Polyelectrolyte and their Properties (광가교성 Sulfonated Polyimide 전해질 고분자를 이용한 습도센서의 제조 및 특성 분석)

  • Lim, Dong-In;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.486-493
    • /
    • 2012
  • Photocurable sulfonated polyimide (SPI) polyelectrolyte containing chalcone group was prepared and fabricated on an alumina electrode pretreated with chalcone-containing silane-coupling agent. SPI films with bis(tetramethyl)ammonium 2,2'-benzidinedisulfonate ($Me_4N$-BDS)/4,4'-diaminochalcone (DAC)/pyromellitic dianhydride (PA)= 90/10/100 possessed very linear response(Y = -0.04528X+7.69446, $R^2=0.99675$) and showed resistance changing from 4.48 to $2.1k{\Omega}$ between 20 and 95 %RH. The response time for absorption and desorption measurements between 33 and 94 %RH% was about 79 s, which affirmed the high efficiency of crosslinked SPI film for rapid detection of humidity. A negative temperature coefficient showing $-0.49%RH/^{\circ}C$ was found and proper temperature compensation should be considered in future applications. Moreover, pretreatment of the substrates with chalcone-containing silane-coupling agent was performed to improve the water durability and the stability of the humidity sensors at a high humidity and a high temperature and long-term stability for 480 h. The crosslinked SPI films anchored to electrode substrate could be a promising material for the fabrication of efficient humidity sensors with superior characteristics compared to the commercially available sensors.

Compensation of Error in Noninvasive Blood Pressure Measurement System Using Optical Sensor (광학 센서를 이용한 비관혈적 혈압 측정의 오차 보정)

  • Ko, J.I.;Jeong, I.C.;Lee, D.H.;Park, S.W.;Hwang, S.O.;Park, S.M.;Kim, G.Y.;Joo, H.S.;Yoon, H.R.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.178-186
    • /
    • 2007
  • This study is attempted to correct an error of electronic blood pressure meter with an optical sensor. In general, for a hospitalized patient, ECG, blood pressure, oxygen saturation, and respiration are basically measured to monitor the patient's condition. Opening of a blood vessel after it is occluded by pressurizing the cuff influences the blood flow of peripheral blood vessels as well as oscillation changes in the cuff. Blood vessels are occluded and peripheral blood flow disappears at cuff pressure above the examinee's blood pressure, while blood vessels are opened and peripheral blood flow appears again at cuff pressure under the examinee's blood pressure. Then Disappear-Appear Point Length(DAPL) of peripheral blood flow can be judged with the signal of peripheral blood flow, thus is available as a factor of error correction for electronic blood pressure meter. Also, systolic or diastolic blood pressure can be corrected with Appear-Point-Pressure(APP) of cuff pressure at a point where blood flow occurs and Appear-Maximum Pressure(AMP) of cuff pressure at the maximum amplitude point of peripheral blood flow after peripheral blood flow appears again. For verification, 27 examinees were selected, and their blood value was obtained through experimental procedure of 4 stages including induction of blood pressure change. The examinees were divided into two groups of experimental group and control group, regression analysis was conducted for experimental group, and correction of a blood pressure error was verified with optical signal by applying the regression equation calculated in experimental group to control group. As an experimental result, mean of the whole measurement errors was 5mmHg or more, which did not meet the standard fur blood pressure meter. As a result of correcting blood pressure measurements with data of DAPL, APP, and AMP as drawn out of PPG signal, systolic blood pressure, mean blood pressure, and diastolic blood pressure were $-0.6{\pm}4.4mmHg,\;-1.0{\pm}3.9mmHg$ and $-1.3{\pm}5.4mmHg$, respectively, indicating that mean of the whole measurement errors was greatly improved, and standard deviation was decreased.

Fabrication and Characterization of NiMn2O4 NTC Thermistor Thick Films by Aerosol Deposition (상온 진공 분말 분사법에 의한 NiMn2O4계 NTC Thermistor 후막제작 및 특성평가)

  • Baek, Chang-Woo;Han, Gui-fang;Hahn, Byung-Dong;Yoon, Woon-Ha;Choi, Jong-Jin;Park, Dong-Soo;Ryu, Jung-ho;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.21 no.5
    • /
    • pp.277-282
    • /
    • 2011
  • Negative temperature coefficient (NTC) materials have been widely studied for industrial applications, such as sensors and temperature compensation devices. NTC thermistor thick films of $Ni_{1+x}Mn_{2-x}O_{4+{\delta}}$ (x = 0.05, 0, -0.05) were fabricated on a glass substrate using the aerosol deposition method at room temperature. Resistance verse temperature (R-T) characteristics of the as-deposited films showed that the B constant ranged from 3900 to 4200 K between $25^{\circ}C$ and $85^{\circ}C$ without heat treatment. When the film was annealed at $600^{\circ}C$ 1h, the resistivity of the film gradually decreased due to crystallization and grain growth. The resistivity and the activation energy of films annealed at $600^{\circ}C$ for 1 h were 5.203, 5.95, and 4.772 $K{\Omega}{\cdot}cm$ and 351, 326, and 299 meV for $Ni_{0.95}Mn_{2.05}O_{4+{\delta}}$, $NiMn_2O_4$, and $Ni_{1.05}Mn_{1.95}O_{4+{\delta}}$, respectively. The annealing process induced insulating $Mn_2O_3$ in the Ni deficient $Ni_{0.95}Mn_{2.05}O_{4+{\delta}}$ composition resulting in large resistivity and activation energy. Meanwhile, excess Ni in $Ni_{1.05}Mn_{1.95}O_{4+{\delta}}$ suppressed the abnormal grain growth and changed $Mn^{3+}$ to $Mn^{4+}$, giving lower resistivity and activation energy.

Differences on specified and actual concrete strength for buildings on seismic zones

  • De-Leon-Escobedo, David;Delgado-Hernandez, David Joaquin;Arteaga-Arcos, Juan Carlos;Flores-Gomora, Jhonnatan
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.349-357
    • /
    • 2017
  • The design of reinforced concrete structures strongly depends on the value of the compression concrete strength used for the structural components. Given the uncertainties involved on the materials quality provided by concrete manufacturers, in the construction stage, these components may be either over or under-reinforced respect to the nominal condition. If the structure is under reinforced, and the deficit on safety level is not as large to require the structure demolition, someone should assume the consequences, and pay for the under standard condition by means of a penalty. If the structure is over reinforced, and other failure modes are not induced, the builder may receive a bonus, as a consequence of the higher, although unrequested, building resistance. The change on the building safety level is even more critical when the structure is under a seismic environment. In this research, a reliability-based criteria, including the consideration of expected losses, is proposed for bonification/penalization, when there are moderated differences between the supplied and specified reinforced concrete strength for the buildings. The formulation is applied to two hypothetical, with regular structural type, 3 and 10 levels reinforced concrete buildings, located on the soft soil zone of Mexico City. They were designed under the current Mexican code regulations, and their responses for typical spectral pseudoaccelerations, combined with their respective occurrence probabilities, are used to calculate the building failure probability. The results are aimed at providing objective basis to start a negotiation towards a satisfactory agreement between the involved parts. The main contribution resides on the explicit consideration of potential losses, including the building and contents losses and the business interruption due to the reconstruction period.

Seasonal Whole-plant Carbon Balance of Phyllospadix iwatensis on the Coast of the Korean Peninsula (한반도 연안에 분포하는 새우말의 탄소수지 계절적 변동)

  • SEUNG HYEON KIM;JONG-HYEOB KIM;HYEGWANG KIM;JIN WOO KU;KI YOUNG KIM;KUN-SEOP LEE
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.1
    • /
    • pp.28-41
    • /
    • 2024
  • The carbon balance serves as a valuable indicator of a plant's physiological status under diverse environmental conditions. We investigated the photosynthetic and respiratory responses of the Asian surfgrass Phyllospadix iwatensis along the northeast coast of the Korean peninsula in response to changing water temperature (ranging from 5℃ to 30℃) to estimate the seasonal whole-plant carbon balance through a series of incubation experiments. The maximum gross photosynthetic rate (Pmax) showed a significant difference among the temperature treatments, while there was no significant difference in photosynthetic efficiency (α). The maximum gross photosynthetic rate of P. iwatensis reached its peaks at 20℃ treatment (101.65 μmol O2 g-1 DW h-1) but decreased rapidly at 30℃. The saturation irradiance (Ik), compensation irradiance (Ic), and respiration rate (R) of P. iwatensis exhibited significant differences among the temperature treatments. The saturation irradiance increased up to 20-25℃ (121.59-124.50 μmol photons m-2 s-1) and sharply decreased at 30℃. The compensation irradiance and respiration rate increased steadily with rising water temperature. The ratio of Pmax to R (Pmax:R ratio) was the highest at 5℃ but dramatically decreased at 30℃. The whole-plant carbon balance, calculated based on photosynthetic parameters, respiration rates, and biomass, exhibited distinct seasonal variation, increasing during winter and spring and decreasing during summer and fall, which is consistent with the highest in situ growth in spring and severely limited growth at the highest water temperature conditions. Phyllospadix iwatensis displayed a negative carbon balance during late summer, fall, and winter, but demonstrated a positive carbon balance during spring and early summer. Our findings suggest that the rising seawater temperatures associated with climate change may lead to significant alterations in the seagrass ecosystem functioning along the rocky shores of the Korean east coast.

Fabrication of Bismuth- and Aluminum-Substituted Dysprosium Iron Garnet Films for Magneto-Optic Recording by Pyrolysis and Their Magnetic and Magneto-Optic Properties

  • Cho, Jae-Kyong
    • The Korean Journal of Ceramics
    • /
    • v.1 no.2
    • /
    • pp.91-95
    • /
    • 1995
  • Polycrystalline bismuth- and aluminum- substituted dysporsium and yttrium iron garnet (Bi2R3-xAlyFe5-yO12, R=Dy or Y, $0\leqx\leq3, \; 0\leqy\leq3$) films have been prepared by pyrolysis. The crystallization temperatures, the solubility limit of bismuth ions into the garnet phase, and magnetic and magneto-optic properties of the films have been investigated as a function of bismuth and aluminum concentration. It was found that the crystallization temperatures as a function of bismuth and aluminum concentration. It was found that the crystallization temperatures of these films rapidly decreased as bismuth concentration. It was found that the crystallization temperatures of these films rapidly decreased as bismuth concentration (x) increased up to x=1.5 and then remained temperatures of these films rapidly decreased as bismuth concentration (x) increased up to x=1.5 and then remained unchanged at x>1.5, whereas, showed no changes as aluminum concentration (y) increased up to y=1.0 and then gradually increased at y>1.0. The solubility limit of bismuth ions was x=1.8 when y=0 but increased to x=2.3 when y=1.0. It was demonstrated that the magnetic and magneto-optic properties of the dysprosium iron garnet films could be tailored by bismuth and aluminum substitution suitable for magneto-optic recording as follows. The saturation magnetization and coercivity data obtained for the films indicated that the film composition at which the magnetic compensation temperature became room temperature was y=1.2 when x=1.0. Near this composition the coercivity and the squareness of the magnetic hysteresis loop of the films were several kOe and unit, respectively. The Curie temperatures of the films increased with the increase of x but decreaed with the increase of y, and was 150-$250^{\circ}C$ when x=1.0 and y=0.6-1.4. The Faraday rotation at 633 nm of the films increased as x increased but decreased as y increased, and was 1 deg/$\mu\textrm{m}$ when x=1.0 and y=1.0. Based on the data obtained, the appropriate film composition for magneto-optic recording was estimated as near x=1.0 and y=1.0 or $BiDy_2AlFe_4O_{12}$.

  • PDF

Growth Characteristics and Physiological Adaptation of Pinus densiflora Seedling in the Canopy Gap (소나무 묘목(苗木)의 Gap내 생장(生長) 및 생리적(生理的) 적응과정(適應過程))

  • Jin, Yonghuan;Lee, Don Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.3
    • /
    • pp.452-460
    • /
    • 2000
  • This study was to investigate the growth characteristics, physiological adaptation of Pinus densiflora(Japanese Red Pine) seedlings at the artificial canopy gap in the Quercus acutissima plantation and to analyze its natural regeneration mechanism. Photosynthetic and transpiration rates were analyzed by different levels of photosynthetically active radiation and by seedling growth. Comparing to seedlings at the open area, those at the canopy gap showed more growth in height than in diameter with different levels of light quality and low light intensity, and the increase rate of dry weight was higher in the aboveground than in the underground, maintaining relatively high T/R rate. The C/F(the ratio of non-photosynthetic organs to photosynthetic organs in dry weight) of the aboveground at the canopy gap was higher than that at the open area by 0.1~0.2, while light saturation and light compensation points at the canopy gap were lower than that at the open area by $300{\mu}mol\;m^{-2}s^{-1}$ and 40%, respectively. The seedlings appeared to have shade tolerance to a certain extent at the young growth stage despite Pinus densiflora is typically classified shade-intolerant species. With light intensity lower than $400{\sim}450{\mu}mol\;m^{-2}s^{-1}$, photosynthetic rate and water use efficiency relatively increased by effective use of light energy.

  • PDF

Development of mcyB-specific Ultra-Rapid Real-time PCR for Quantitative Detection of Microcystis aeruginosa (Microcystis aeruginosa의 정량을 위한 mcyB 특이 초고속 실시간 유전자 증폭법의 개발)

  • Jung, Hyunchul;Yim, Byoungcheol;Lim, Sujin;Kim, Byounghee;Yoon, Byoungsu;Lee, Okmin
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.46-56
    • /
    • 2018
  • A mcyB-specific Ultra-Rapid quantitative PCR was developed for the quantitative detection of Microcystis aeruginosa, which is often a dominant species in green tide. McyB-specific UR-qPCR was optimized under extremely short times of each step in thermal cycles, based on the specific primers deduced from the mcyB in microcystin synthetase of M. aeruginosa. The M. aeruginosa strain KG07 was used as a standard for quantification, after the microscopic counting and calculation by mcyB-specific UR-qPCR. The water samples from the river water with the Microcystis outbreak were also measured by using both methods. The $1.0{\times}10^8$ molecules of mcyB-specific DNA was recognized inner 4 minutes after beginning of UR-qPCR, while $1.0{\times}10^4$ molecules of mcyB-specific templates was detected inner 7 minutes with quantitative manner. From the range of $1.0{\times}10^2$ to $1.0{\times}10^8$ initial molecules, quantification was well established based on $C_T$ using mcyB-specific UR-qPCR (Regression coefficiency, $R^2=0.9977$). Between the numbers of M. aeruginosa cell counting under microscope and calculated numbers using mcyB-specific UR-qPCR, some differences were often found. The reasons for these differences were discussed; therefore, easy compensation method was proposed that was dependent on the numbers of the cell counting. Additionally, to easily extract the genomic DNA (gDNA) from the samples, a freeze-fracturing of water-sample using liquid nitrogen was tested, by excluding the conventional gDNA extraction method. It was also verified that there were no significant differences using the UR-qPCR with both gDNAs. In conclusion, the mcyB-specific UR-qPCR that we proposed would be expected to be a useful tool for rapid quantification and easy monitoring of M. aeruginosa in environmental water.

Design of Vision Based Punching Machine having Serial Communication

  • Lee, Young-Choon;Lee, Seong-Cheol;Kim, Seong-Min
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2430-2434
    • /
    • 2005
  • Automatic FPC punching instrument for the improvement of working condition and cost saving is introduced in this paper. FPC(flexible printed circuit) is used to detect the contact position of K/B and button like a cellular phone. Depending on the quality of the printed ink and position of reference punching point to the FPC, the resistance and current are varied to the malfunctioning values. The size of reference punching point is 2mm and the above. Because the punching operation is done manually, the accuracy of the punching degree is varied with operator's condition. Recently, The punching accuracy has deteriorated severely to the 2mm punching reference hall so that assembly of the K/B has hardly done. To improve this manual punching operation to the FPC, automatic FPC punching system is introduced. Precise mechanical parts like a 5-step stepping motor and ball screw mechanism are designed and tested and low cost PC camera is used for the sake of cost down instead of using high quality vision systems for the FA. 3D Mechanical design tool(Pro/E) is used to manage the exact tolerance circumstances and avoid design failures. Simulation is performed to make the complete vision based punching machine before assembly, and this procedure led to the manufacturing cost saving. As the image processing algorithms, dilation, erosion, and threshold calculation is applied to obtain an exact center position from the FPC print marks. These image processing algorithms made the original images having various noises have clean binary pixels which is easy to calculate the center position of print marks. Moment and Least square method are used to calculate the center position of objects. In this development circumstance, Moment method was superior to the Least square one at the calculation of speed and against noise. Main control panel is programmed by Visual C++ and graphical Active X for the whole management of vision based automatic punching machine. Operating modes like manual, calibration, and automatic mode are added to the main control panel for the compensation of bad FPC print conditions and mechanical tolerance occurring in the case of punch and die reassembly. Test algorithms and programs showed good results to the designed automatic punching system and led to the increase of productivity and huge cost down to law material like FPC by avoiding bad quality.

  • PDF