• Title/Summary/Keyword: R-290

Search Result 362, Processing Time 0.04 seconds

A Generalized Correlation and Rating Charts for Mass Flow Rate through Capillary Tubes with Several Alternative Refrigerants

  • Choi Jong Min;Jang Yong Hee;Kim Yongchan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.4
    • /
    • pp.192-197
    • /
    • 2004
  • A capillary tube, which is a common expansion device in small sized refrig-eration and air-conditioning systems, should be redesigned properly to establish an optimum operation cycle of a refrigerating system with alternative refrigerants. Based on experimental data for R-22, R-290, and R-407C, an empirical correlation is developed to predict mass flow rate through capillary tubes. Dimensionless parameters are derived from the Buckingham Pi theorem, considering the effects of operating conditions and capillary tube geometry on mass flow rate. Approximately $97\%$ of the present data are correlated within a relative deviation of $\pm\;10\%.$ The present correlation also predicts the data obtained from open literature within $\pm\;15\%.$ In addition, rating charts of refrigerant flow rate for R-12, R-22, R-134a, R-152a, R-407C, R-410A, R-290, and R-600a are developed.

A Generalized Empirical Correlation on the Mass Flow Rate through Adiabatic Capillary Tubes with Alternative Refrigerants (대체냉매를 적용한 일반화된 모세관의 유량예측 상관식)

  • 최종민;장용희;김용찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.9
    • /
    • pp.744-750
    • /
    • 2003
  • The performance of adiabatic capillary tubes are measured to provide the database for a generalized correlation. Test conditions and capillary tube geometries are selected to cover a wide range typically observed in air-conditioning and heat pump applications. Based on extensive experimental data for R22, R290, and R407C measured in this study, a generalized correlation for refrigerant flow rate in adiabatic capillary tubes is developed by implementing dimensionless parameters for tube inlet conditions, capillary tube geometry, and refrigerant properties. The correlation yields good agreement with the present data for R22, R290, and R407C with average and standard deviations of 0.9% and 5.0%, respectively. In addition, approximately 97% of the data for Rl2, R134a, R152a, R410A, and R600a obtained in the open literature are correlated within a relative deviation of $\pm$ 15%.

Study on Performance Characteristic of Water-Cooled Type Beat Pump Using Hydrocarbon Refrigerants (탄화수소계 냉매를 이용한 수냉식 히트점프의 성능특성에 관한 연구)

  • Jun Chul-Ho;Lee Ho-Saeng;Kim Jae-Dol;Yoon Jung-ln
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.8
    • /
    • pp.870-876
    • /
    • 2005
  • This study of the performance characteristics of natural refrigerants such as R-290 (propane), R-6OOa (iso-butane) and R-1270 (propylene) has investigated to compare with conventional HCFC's refrigerant R-22 for water-cooled heat pump system. The experimental apparatus has basic parts of cycle that uses the water as a heat source. The Performance of the water-cooled system using hydrocarbon refrigerants had been getting better than R-22 from start-up to the similar evaporating temperature after stabilizing system. Through the above it is possible that hydrocarbon refrigerants could be drop-in alternatives for R-22.

Performance Experiment and Exergy Analysis of an Automotive Air-conditioning System (자동차용 에어컨 성능실험과 액서지 해석)

  • 오상한;윤종갑;원성필
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.4
    • /
    • pp.363-370
    • /
    • 2000
  • Experiments have been peformed, using pure refrigerant R134a and a zeotropic refrigerant mixture R290/R600a(60%/40%) and their performances have been analyzed by the first and second laws(exergy method) of thermodynamics. From the experimental results, variations of compressor speed and air temperature have a great effect on the performance of the system. The sum of exergy losses in compressor and evaporator is about 60% of total exergy loss, using refrigerant R134a, so it is necessary to improve the performance of compressor and evaporator. According to the experimental results using refrigerant mixture of R290/R600a(60%/40%), the exergy losses in heat exchange processes are decreased but the exergy loss in throttling process is increased. The performance of the system has been improved by 20∼30% compared with that of R134a and exergy losses have been also reduced.

  • PDF

The application of hydrocarbon refrigerants in a hermetic reciprocating compressor for low back pressure conditions (저온용 밀폐형 왕복동 압축기에서 탄화수소계 냉매 적용)

  • 김기문;박희용
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.683-694
    • /
    • 1998
  • The application of hydrocarbon refrigerants in a hermetic reciprocating compressor for refrigerator is investigated. The selected refrigerants are isobutane(R600a), propane(R290), R12, binary mixture of R600a/R290, and OS-21CII. Both theoretical and experimental investigations have been performed for the selected refrigerants. The test results of hydrocarbon refrigerants have been compared to the traditional refrigerant(R12). The results show that hydrocarbon refrigerants(HC-Blend, OS-21C II) are very good alternatives in the refrigeration system for R12.

  • PDF

Evaluation of the Performance Characteristics of Propane/isobutene Refrigerant Mixtures in a Small multi-refrigeration System (프로판/이소부탄 혼합냉매를 적용한 가정용 소형 멀티 냉동시스템의 성능특성에 관한 연구)

  • Lee, Moo-Yeon;Choi, Seok-Jae;Kim, Sang-Ok
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1945-1950
    • /
    • 2004
  • In this paper, The performance of Kim-Chi refrigerator with three evaporator and one compressor was investigated in employing 55% propane and 45% isobutane (R290/R600a) refrigerant mixture as an alternative refrigerant of R134a. The drop in test was performed by varying both refrigerant charge amount and capillary tube length in order to find both the performance and reliability of a small multi-refrigeration system. As a result, Both the power consumption and COP is increased by about 15% and 10%, respectively as compared to the baseline R134a system. In addition, the propane/isobutene refrigerant mixture system took advantage of the minimization of modification and redesigning of system components because of similar thermodynamic properties with R134a such as saturation pressure, temperature, normal boiling point(NBP) characteristics

  • PDF

Analysis of Performance Characteristics of a Cascade Refrigeration System with Internal Heat Exchanger using Natural Refrigerants (천연냉매를 사용하는 내부 열교환기 부착 캐스케이드 냉동시스템의 성능 특성 분석)

  • Son, Chang-Hyo;Oh, Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1123-1128
    • /
    • 2009
  • In this paper, the cycle performance characteristics of a cascade refrigeration system with internal heat exchanger using natural refrigerants is presented to offer the basic design data for the operating parameters of the system. This system considered in this study is consisted of a high temperature cycle using a carbon dioxide(R744) and low temperature cycle using refrigerants such as R290, R1270, R600a and Ethane. The main results were summarized as follows : The COP of the cascade refrigeration system of R600a with internal heat exchanger is the highest grade in low temperature cycle using refrigerants such as R290, R1270, R600a and Ethane. The COP of the cascade refrigeration system with internal heat exchanger only in high temperature cycle is the highest value among three type cycle, such as only low temperature cycle, only high temperature cycle and all the cycle.

Analysis and Experiment on The Performance of an Autocascade Refrigeration System Using Carbon Dioxide As a Refrigerant (이산화탄소를 냉매로 사용하는 오토캐스케이드 냉동기의 성능에 관한 해석 및 실험)

  • 김성구;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.5
    • /
    • pp.411-421
    • /
    • 2001
  • The purpose of this study is to investigate the performance of an autocascade refrigeration system by simulation and experiment using refrigerant mixtures of R744/134a and R744/290 as working fluid. Variations of mass flow rate of refrigerant, compressor work refrigeration capacity and COP with respect to mass fraction of R744/134a and R744/290 mixture were presented under different operating conditions. Performance test has been executed by ASRAE standard. Experimental results show as the composition of R744 in the refrigerant mixture increases, heating and coling capacity are enhanced, but COP trends to decrease. Experimental results are compared with those from the simulation.

  • PDF

Performance of R290 and R1270 as Alternative Refrigerants of R22 According to Temperature Variations of Evaporator and Condenser (증발기와 응축기 온도변화에 따른 R22 대체냉매 R290 및 R1270의 성능평가)

  • Baek In-Cheol;Park Ki-Jung;Shim Yun-Bo;Jung Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.10
    • /
    • pp.761-767
    • /
    • 2006
  • In this study, performance of 2 pure hydrocarbons R290 and R1270 was measured in an attempt to substitute R22 under 3 different temperature conditions. They were tested in a refrigerating bench tester with a hermetic rotary compressor. The test bench provided about 3.5 kW capacity and water and water/glycol mixture were employed as the secondary heat transfer fluids. All tests were conducted under the same external conditions resulting in the average saturation temperatures of $7/45^{\circ}C$ and $-7/41^{\circ}C$ and $-21/28^{\circ}C$ in the evaporator and condenser, respectively. Test results show that the coefficient of performance (COP) of these refrigerants is up to 11.54% higher than that of R22 in all temperature conditions. Compressor discharge temperatures were reduced by $14{\sim}31^{\circ}C$ with these fluids. There was no problem with mineral oil since the mixtures were mainly composed of hydrocarbons. The amount of charge was reduced up to 58% as compared to R22. Overall, these fluids provide good performance with reasonable energy savings without any environmental problem and thus can be used as long term alternatives for residential air-conditioning and heat pumping application.