• Title/Summary/Keyword: R-22 냉매

Search Result 192, Processing Time 0.028 seconds

An Experimental Study on Performance of Heat Pump System Using Hydrocarbon Refrigerants by Changing Indoor Load (실내 부하 변동에 따른 탄화수소계 냉매를 이용한 히트펌프 성능에 관한 실험적 연구)

  • Kim, Jae-Dol;Seong, Gwang-Hoon;Jeong, Seok-Kwon;Yoon, Jung-In;Lee, Ho-Saeng
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.204-210
    • /
    • 2006
  • This study presents heat pump system characteristics using hydrocarbon refrigerants as alternative refrigerant for R-22 with respect to the variation of indoor load. Pure R-22 and R-290. R-600a, R-1270 were considered as working fluids The experimental apparatus was constructed to investigate the performance of heat pump using the air as a heat source. The performance were calculated based on compression shaft work. refrigeration capacity. pressure ratio, discharge temperature and COP. The experimental results show that the COP and refrigeration capacity of hydrocarbon refrigerants were higher than that of R-22. Through the above. hydrocarbon refrigerants are good alternatives in the heat pump system for R-22.

An experimental study on the performance of a window system air-conditioner using R407C and R410B (R407C 및 R410B 적용 창문형 에어컨의 성능에 관한 실험적 연구)

  • Kim, M.H.;Shin, J.S.;Kim, K.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.536-544
    • /
    • 1997
  • This study presents test results of a residential window system air-conditioner using R22 and two potential alternative refrigerants, R407C and R410B. A series of performance tests was performed for the basic and liquid-suction heat exchange cycle in a psychrometric calorimeter test facility. For R407C, the same rotary compressor was used as in the R22 system. However, compressor for the R410B system was modified to provide the similar cooling capacity. The evaporator circuit was changed to get a counter-cross flow heat exchanger to take advantage of zeotropic mixture's temperature glide, and liquid-line suction-line heat exchange cycle was also considered to improve the performance of the system. Test results were compared to those for the basic R22 system.

  • PDF

Experimental Study on Operation Performance of Cooling and Heating A/C using R-410A (대체냉매 R-410A를 적용한 냉난방기 운전성능 실험연구)

  • Um, U.S.;Park, K.M.;Kwon, Y.C.;Lee, S.J.
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.889-892
    • /
    • 2009
  • 본 연구에서는 R-22와 R-410A를 사용하는 냉난방기의 성능 및 사이클 특성을 조사하기 위하여, R-22와 R-410A를 적용한 냉난방기의 성능을 비교 실험하였다. 이를 위하여 R-22와 R-410A 냉난방기 사이클을 구성하였으며, 냉난방기 시스템의의 성능을 측정하기 위하여 공기엔탈피식 칼로리미터를 사용하였다. 실험을 통해 냉난방 온도조건에서 능력, 소비전력, 온도, 압력 등을 측정하였다. 본 연구결과는 R-410A의 냉난방기 사이클 적용 가능성을 보여주었다. 한편, 실험으로부터 획득된 데이터는 R-410A 냉난방기 개발시 기초 설계자료 및 시스템의 효율향상을 위한 방안으로 활용될 것이다.

  • PDF

Evaporation Heat Transfer and Pressure Drop of Mixture Refrigerant R-22 and R-407C in a Diameter of 4.3 mm (4.3 mm 세관내 R-22와 R-407C의 증발 열전달과 압력강하)

  • Roh, G.S.;Son, C.H.
    • Journal of Power System Engineering
    • /
    • v.12 no.4
    • /
    • pp.26-31
    • /
    • 2008
  • The evaporation heat transfer coefficient and pressure drop of R-22 and R-407C in a small diameter copper tube were investigated experimentally. The main components of the refrigerant loop are a receiver, a compressor, a mass flow mete, a condense and a double pipe type evaporate (test section). The test section consists of a smooth copper tube of 4.3 mm inner diameter. The refrigerant mass fluxes were varied from 100 to $300[kg/m^{2}s]$ and the saturation temperature of evaporator were $5[^{\circ}C]$. The evaporation heat transfer coefficients of R-22 and R-407C increase with the Increase in mass flux and vapor quality. The evaporation heat transfer coefficient of R-22 is about $7.3\sim47.1%$ higher than that of R-407C. The evaporation pressure drop of R-22 and R-407C increase with the increase of mass flux. The pressure drop of R-22 is about $8\sim20%$ higher than that of R-407C.

  • PDF

Flow Condensation Heat Transfer Coefficients of R22 Alternative Refrigerants in Plain and Microfin Tubes of 6.0 mm Inside Diameter (내경 6 mm 평관과 마이크로 핀관 내에서 R22 대체냉매의 흐름응축 열전달계수)

  • 박기호;서영호;박기정;정동수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.444-451
    • /
    • 2004
  • Flow condensation heat transfer coefficients (HTCs) of R22, R134a, R407C, and R410A were measured on horizontal plain and microfin tubes. The experimental apparatus was composed of three main parts; a refrigerant loop, a water loop and a water/glycol loop. The test section in the refrigerant loop was made of both a plain and a microfin copper tube of 6.0∼6.16 mm inside diameter and 1.0 m length. Refrigerants were cooled by passing cold water through an annulus surrounding the test section. Tests were performed at a fixed refrigerant saturation temperature of 4$0^{\circ}C$ with mass fluxes of 100, 200, and 300 kg/m2s. Test results showed that at similar mass flux the flow condensation HTCs of R134a were similar to those of R22 for both plain and microfin tubes. On the other hand, HTCs of R407C were lower than those of R22 by 4∼16% and 16∼42% for plain and microfin tubes respectively. And HTCs of R410A were similar to those of R22 for a plain tube but lower than those of R22 by 3∼9% for a microfin tube. Heat transfer enhancement factors of a microfin tube were 1.3∼1.9.

Condensation heat transfer characteristics of hydrocarbon. refrigerants inside horizontal tubes (수평평활관내 탄화수소계 냉매의 응축전열 특성에 관한 연구)

  • 이용언;박승준;정진호;장승환;오후규
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.15-20
    • /
    • 2001
  • This study investigated the condensation heat transfer coefficients of R-22, R-290 and R-600a inside horizontal tube. Heat transfer measurements were peformed for smooth tube with outside diameter of 12.7 mm Condensation temperatures and mass velocity were ranged from 308 K to 323 K and $51kg/\textrm{m}^2s$s to $250kg/\textrm{m}^2s$, respectively. The test results showed that the local condensation heat transfer coefficients increased as the mass flux increased, and also the effects of mass velocity on heat transfer coefficients of R-290 and R-600a were less than R-22. Average condensation heat transfer coefficients of natural refrigerants were superior to that of R-22. The present results had a good agreement with Haraguchi's correlation.

  • PDF

Performance Characteristics of Refrigeration System Using R744 as a Secondary Refrigerant (2차 냉매로 천연냉매 R744를 사용하는 냉동시스템의 성능 특성)

  • Yi, Wen-Bin;Jo, Hwan;Yoon, Jung-In;Choi, In-Soo;Son, Chang-Hyo
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.17-22
    • /
    • 2014
  • In this paper, the performance characteristics of R404 indirect refrigeration system using R744 as a secondary refrigerant were investigated experimentally to obtain a optimum design data for this system. First, for the constant experimental conditions, the COP of R404A indirect refrigeration system using R744 as secondary refrigerants decreases with respect to the increases in R404A condensation temperature and temperature difference in R744 cooler. And, the COP of indirect refrigeration system using R744 as secondary refrigerants decreases slightly with decreasing the mass flowrate of R744.

Effect of Parameters on the Two-Phase Flow Distribution Characteristics of Refrigerants in a Horizontal T-Junction (수평 T형 분지관 내 냉매 이상유동 분배특성에 미치는 변수들의 영향)

  • Tae Sang-Jin;Cho Keumnam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.1
    • /
    • pp.31-37
    • /
    • 2006
  • The present study has been experimentally investigated the effect of geometric and operating parameters on the two-phase flow distribution of refrigerants in a horizontal T-junction. The operating parameters were the kind of refrigerants (R-22, R- l34a, and R-410A), saturated temperature, and the inlet mass flux and quality. The geometric parameters were the tube diameter and the tube diameter ratio. The measured data of refrigerants were compared with the values predicted using the models developed by several researchers for air/water or steani/water two-phase flow. Among the operating parameters, the inlet Quality was the most sensitive to the mass flow rate ratio. Between the geometric parameters, the tube diameter ratio was more sensitive than tube diameter.

Two-Stage compression cycle operating with alternative refrigerant using by EES program (EES를 이용한 대체냉매 작동 2단압축냉동사이클의 성능해석)

  • Park, Chun-Wan;Lee, Dong-Gyu;Choi, Seung-Kil;Kang, Chae-Dong
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.533-538
    • /
    • 2009
  • The present study has been conducted to an analysis of two stage refrigeration cycle with alternative refrigerant R410A. In the analysis, single stage cycle (R22 and R410A) compared to COP changing with supercooling degree. Secondly, two stage refrigeration cycle is investigated to the existence of intercooler or supercooler. At results, supercooler contributes to the increase of cooling capacity and the decrease of COP.

  • PDF

Study on the Performance of the Separate type Heat Pipe Using the Parallel Flow type Heat Exchanger (평행류형 열교환기를 이용한 분리형 히트파이프의 성능에 관한 연구)

  • Jeon, Sung-Taek;Cho, Jin-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5045-5050
    • /
    • 2015
  • As modern houses are constructed with high-density and high-insulation, there is benefit to reduce energy consumption, but there are many side effects raised from polluted air. To solve the problem, a ventilation system is used to improve a indoor air quality. In this study, we tested the parallel flow type heat exchanger used in a heat exchanger of an automotive air conditioner. And we experimentally estimate ventilation performance of HRV(heat recovery ventilator) with heat-pipe according to working fluid filling quantity and ventilation. The working fluid was R22, which was filled from 40 to 60 (%vol.) by 10(%vol.). Ventilation based on the front velocity was measured from 0.3 m/s to 1.5 m/s by 0.3 m/s intervals. Refrigerant filling quantity with the highest efficiency was found to depend on the ventilation. From this study the optimal refrigerant filling quantity in accordance with the ventilation of the detachable heat pipes was found experimentally.