• Title/Summary/Keyword: R-22

Search Result 5,803, Processing Time 0.035 seconds

Overexpression of Long Non-Coding RNA MIR22HG Represses Proliferation and Enhances Apoptosis via miR-629-5p/TET3 Axis in Osteosarcoma Cells

  • Zhao, Haoliang;Zhang, Ming;Yang, Xuejing;Song, Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1331-1342
    • /
    • 2021
  • In this study, we evaluated the mechanism of long non-coding RNA MIR22 host gene (LncRNA MIR22HG) in osteosarcoma cells. Forty-eight paired osteosarcoma and adjacent tissues samples were collected and the bioinformatic analyses were performed. Target genes and potential binding sites of MIR22HG, microRNA (miR)-629-5p and tet methylcytosine dioxygenase 3 (TET3) were predicted by Starbase and TargetScan V7.2 and confirmed by dual-luciferase reporter assay. Cell Counting Kit-8, colony formation and flow cytometry assays were utilized to determine the viability, proliferation and apoptosis of transfected osteosarcoma cells. Pearson's analysis was introduced for the correlation analysis between MIR22HG and miR-629-5p in osteosarcoma tissue. Relative expressions of MIR22HG, miR-629-5p and TET3 were measured by quantitative real-time polymerase chain reaction or Western blot. MiR-629-5p could competitively bind with and was negatively correlated with MIR22HG, the latter of which was evidenced by the high expression of miR-629-5p and low expression of MIR22HG in osteosarcoma tissues. Overexpressed MIR22HG repressed the viability and proliferation but enhanced apoptosis of osteosarcoma cells, which was reversed by miR-629-5p upregulation. TET3 was the target gene of miR-629-5p, and the promotive effects of upregulated miR-629-5p on the viability and proliferation as well as its repressive effect on apoptosis were abrogated via overexpressed TET3. To sum up, overexpressed MIR22HG inhibits the viability and proliferation of osteosarcoma cells, which was achieved via regulation of the miR-629-5p/TET3 axis.

Experimental study for the pressure drop of R-22 and R-4O7C during the condensation in the micro-fin tubes (마이크로핀관내에서 R-22와 R-4O7C의 응축압력강하 특성에 관한 실험적 연구)

  • Roh, Geon-Sang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.715-722
    • /
    • 2007
  • Experiments were conducted for the investigation of pressure drop inside horizontal micro-fin tubes during the condensation of R-22 and ternary refrigerant. R-407C(HFC-32/125/134a 23/25/62 wt%) as a substitute of R-22. The condenser is a double-tube and counterflow type heat exchanger which is consisted with micro-fin tubes having 60 fins with a length of 4000mm, outer diameter of 9.53mm and fin height of 0.2mm. The mass velocity varied from 102.1 to $301.0kg/(m^2{\cdot}s)$ and inlet quality was fixed as 1.0. From the experimental results. the pressure drop for R-407C was considerably higher than that for R-22. The value of PF(penalty factor) for both of refrigerants was not bigger than the ratio of micro-fin tube area to smooth tube area. Based on the experimental data. correlation was Proposed for the prediction of frictional pressure drop during the condensation of R-22 and R-407C inside horizontal micro-fin tubes.

An Experimental Study on Convective Boiling of R-22 and R-410A in Horizontal Smooth and Micro-fin Tubes

  • Kim, Yongchan;Seo, Kook-Jeong;Lee, Kyu-Jung;Park, Youn cheol
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.8
    • /
    • pp.1156-1164
    • /
    • 2001
  • Evaporation heat transfer coefficients and pressure drops were measured for smooth and micro-fin tubes with R-22 and R-410A. Heat transfer measurements were performed for 3.0m long horizontal tubes with nominal outside diameters of 9.52 and 7.0mm over an evaporating temperature range of -15 to 5$\^{C}$, a mass flux range of 68 to 211kg/㎡s, and a heat flux range of 5 to 15kW/㎡. It was observed that the heat transfer coefficient increased with mass flux. Evaporation heat transfer coefficients of R-22 and R-410A increased as the evaporating temperature dropped at a lower heat flux. Generally, R-420A showed the higher heat transfer coefficients than R-22 in the range of low mass flux, high heat flux and high evaporating temperature. Pressure drop increased with a decrease of evaporating temperature and a rise of mass flux. Pressure drop of R-22 was higher than that of R-410A at the same mass flux.

  • PDF

Utilization Of Ethane As Working Fluid At Two-Stage Cascade Vapour Compression System

  • Kim, Yeong-Geun;Shin, You-Sik;Jeong, Hyo-Min;Chung, Han-Shik;Lubi, Rahadiyan
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.414-420
    • /
    • 2005
  • For supporting future demands of lower temperature. environmental friendly low- temperature refrigerants must be studied and developed to replace halocarbon. Ethane. which is one of hydrocarbon compound. is an environmental friendly refrigerant because it has zero ODP and GWP ${\sim}$ 20[per 100yr]. On this study, two-stage cascade refrigeration system was utilized to investigate performance of ethane on the low-stage. By employing R22 at higher stages. energetic performance as well as operating condition of R22/R170 system is compared to R22/R23. At low stage evaporation pressure ranges from 1.10 to 2.74 bar, R22/R170 shows higher COP over R22/R23. Furthermore, at the same range evaporation temperature R22/R170 can reach lower temperature.

  • PDF

Evaporating Heat Transfer Characteristics of R-290, R-600a Inside Horizontal Double Pipe Heat Exchangers (R-290, R-600a의 수평 이중관형 열교환기내 증발 특성)

  • 홍진우;노건상;권옥배;박기원;오후규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.3
    • /
    • pp.309-314
    • /
    • 2000
  • Experimental results for heat transfer characteristics of natural refrigerants R-290, R-600a and HCFC refrigerant R-22 during evaporating inside horizontal double pipe heat exchangers are presented. The experimental apparatus is basically a vapour heat pump system, composed of a compressor, a condenser, expansion devices, a evaporator, and some other peripheral devices. The test sections were horizontal double pipe heat exchangers, which were a pair of smoothed tube, having 10.07 mm ID, 12.07 mm OD, and grooved inner fin tube, having 12.70 mm OD, 0.25 mm fin height, and 75 fins. The local evaporating heat transfer coefficients of natural refrigerants were not much affected with the mass velocity than R-22 and it could be interpreted that the local evaporating heat transfer coefficients of R-22 were increased more than those of R-290, R-600a according to the increment of mass velocity. Moreover, the maximum increment of the heat transfer coefficient was found in R-290. The average heat transfer coefficient was obtained the maximum value in R-290 and the minimum value in R-22. It reveals that the natural refrigerant can be used as a substitute for R-22. In the grooved inner fin tube, 70% of the increment of the heat transfer coefficient was obtained compared to the smoothed tube.

  • PDF

Experimentation and modeling on the flow of R407c and R290 through capillary tubes (R407C 및 R290 냉매에 대한 모세관내 유동특성 실험 및 모델링)

  • 김용찬;조일용;최종민
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.492-498
    • /
    • 1999
  • Mass flow rates of R407C and R290 through capillary tubes were measured with various capillary tube geometries and flow conditions. For all refrigerants tested in the present study, mass flow rate through the capillary tube was strongly dependent on the condensing pressure, subcooling and capillary length and diameter. The flow rate of R407C was 5~10[%] higher than that of R22 at the same condensing temperature and degree of subcooling, while flow rate for R290 was 40[%] lower than that for R22. Based on experimental results, an empirical correlation was developed using Pi theorem to predict the mass flow rate through capillary tubes. The predicted flow rates using the model were consistent with the experimental data within ${\pm}$10[%].

  • PDF

Pressure drop of R-22 and R-407C during condensation in horizontal smooth tubes (냉매 R-22, R-407C의 수평평활관내 응축압력강하에 관한 연구)

  • 노건상;오후규;권옥배
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.70-80
    • /
    • 1996
  • Experimental results for forced convection condensation of R-22 and R-407C inside 7.5mm ID and 4000mm length of horizontal tubes are presented. The experimental data covered total flow rate from 114.3 to 267.1kg/($m^2$.s) and quality from 0 to 1. The vapor temperature and pressure drop along the tube were measured. The pressure drop for R-407C increased with flow rate similar to that of R-22. The experimental data compared with the available perdictions for pressure drop. Based on the data a prediction method was presented for the calculation of pressure drop of R-22 alternative refrigerants.

  • PDF

External Condensation Heat Transfer Coefficients of R22 Alternative Refrigerants and R134a According to the Saturated Vapor Temperature Change on a Smooth Tube (수평관에서 R22 대체냉매 및 R134a의 포화증기 온도변화에 따른 외부 응축 열전달계수에 관한 연구)

  • Yoo Gil-Sang;Hwang Ji-Hwan;Park Ki-Jung;Jung Dongsoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.8
    • /
    • pp.729-735
    • /
    • 2005
  • In this study, external condensation heat transfer coefficients (HTCs) were measured on a horizontal smooth tube at the saturated vapor temperature of $30^{\circ}C,\;39{\circ}C,\;and\;50^{\circ}C$ for R22, R410A, R407C, and R134a with the wall subcooling of $3\~8^{\circ}C$. The HTCs of all refrigerants are the highest at $30^{\circ}C,\;39{\circ}C,\;and\;50^{\circ}C$ in order. This trend is due to its excellent thermodynamic properties of the liquid phase. The measured data of HTCs were compared with the calculated ones by Nusselt's equation for a smooth tube. Measured HTCs of R22, R134a, R410A are $4.2\~7.5\%$ higher than prediction respectively while those of R407C are $15.6\~28.9\%$ lower than the prediction.

Condensing Heat Transfer Charactristics of R-22 Alternative Refrigerants on Water Sources Heat Pump (수열원 펌프에서의 R-22 대체냉매의 응축열전달특성에 관한 연구)

  • 김기수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.285-293
    • /
    • 1998
  • This paper presents an experimental study on condensing heat transfer characteristics of R-22 alternative refrigerants, R-290 and R-410a on water sources heat pump. The apparatus mainly consisted of vapor pump condenser used to the test section evaporator manual expansion valve and measuring device. Test section constructed a smoothed tube of 10.07 mm ID and 12.7mm OD with a total length 6,300 mm was horizontal double pipe counterflow condenser. The refrigerants R-22, R-290 and R-410a were cooled by a coolant circulated in a surrounding annulus. Experimental range of mass velocities was changed from about 100 to 300 kg/($m^2$.s) and inlet quality 1.0 The credibility of experimental apparatus was 6 percent between heating capacity and cooling capacity added to compressor shaft power. The condensing heat transfer coefficients were increased with increasing mass velocity. However in case of R-290 they were more increasing than those of R-410a and R-22 Comparing the heat transfer coefficient between the experimental data and other's data the Cavallini-Zecchin's data was revealed to more similar prediction of author's experimental results on the average heat transfer coefficients.

  • PDF

R-22 and R-410A Condensation in Flat Aluminum Multi-Channel Tubes

  • Kim, Nae-Hyun;Min, Chang-Keun;Jung, Ho-Jong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.3
    • /
    • pp.114-124
    • /
    • 2003
  • In this study, condensation heat transfer tests were conducted in flat aluminum multi-channel tubes using R-410A, and the results are compared with those of R-22. The flat tubes have two internal geometries; one with smooth inner surface and the other with micro-fins. Data are presented for the following range of variables; vapor Quality (0.1∼0.9), mass flux (200∼600 kg/$m^2$s) and heat flux (5∼15 kW/$m^2$). Results show that the effect of surface tension drainage on the fin surface is more pronounced for R-22 than R-410A. The smaller Weber number of R-22 may be responsible. For the smooth tube, the heat transfer coefficient of R-410A is slightly larger than that of R-22. For the micro-fin tube, however, the trend is reversed. Possible reason is provided considering physical properties of the refrigerants. For the smooth tube, Webb's correlation predicts the data reasonably well. For the micro-fin tube, the Yang and Webb model was modified to correlate the present data. The modified model adequately predicts the data.