• Title/Summary/Keyword: R/C shear wall

Search Result 38, Processing Time 0.023 seconds

Reliability Based Stability Analysis and Design Criteria for Reinforced Concrete Retaining Wall (신뢰성(信賴性) 이론(理論)에 의한 R.C.옹벽(擁壁)의 안정해석(安定解析) 및 설계규준(設計規準))

  • Cho, Tae Song;Cho, Hyo Nam;Chun, Chai Myung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.71-86
    • /
    • 1983
  • Current R.C. retaining wall design is bared on WSD, but the reliability based design method is more rational than the WSD. For this reason, this study proposes a reliability based design criteria for the cantilever retaining wall, which is most common type of retaining wall, and also proposes the theoretical bases of nominal safety factors of stability analysis by introducing the reliability theory. The limit state equations of stability analysis and design of each part of cantilever retaining wall are derived and the uncertainty measuring algorithms of each equation are also derived by MFOSM using Coulomb's coefficient of the active earth pressure and Hansen's bearing capacity formula. The levels of uncertainties corresponding to these algorithms are proposed appropriate values considering our actuality. The target reliability indices (overturning: ${\beta}_0$=4.0, sliding: ${\beta}_0$=3.5, bearing capacity: [${\beta}_0$=3.0, design for flexure: [${\beta}_0$=3.0, design for shear: ${\beta}_0$=3.2) are selected as optimal values considering our practice based on the calibration with the current R.C. retaining wall design safety provisions. Load and resistance factors are measured by using the proposed uncertainties and the selected target reliability indices. Furthermore, a set of nominal safety factors, allowable stresses, and allowable shear stresses are proposed for the current WSD design provisions. It may be asserted that the proposed LRFD reliability based design criteria for the R.C. retaining wall may have to be incorporated into the current R.C. design codes as a design provision corresponding to the USD provisions of the current R.C. design code.

  • PDF

The effect of cavity wall property on the shear bond strength test using iris method (Iris 법을 이용한 전단접착강도 측정에서 와동벽의 영향)

  • Kim, Dong-Hwan;Bae, Ji-Hyun;Cho, Byeong-Hoon;Lee, In-Bog;Baek, Seung-Ho;Ryu, Hyun-Mi;Son, Ho-Hyun;Um, Chung-Moon;Kwon, Hyuck-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.2
    • /
    • pp.170-176
    • /
    • 2004
  • Objectives : In the unique metal iris method. the developing interfacial gap at the cavity floor resulting from the cavity wall property during polymerizing composite resin might affect the nominal shear bond strength values. The aim of this study is to evaluate that the iris method reduces the cohesive failure in the substrates and the cavity wall property effects on the shear bond strength tests using iris method. Materials and Methods : The occlusal dentin of 64 extracted human molars were randomly divided into 4 groups to simulate two different levels of cavity wall property (metal and dentin iris) and two different materials ($ONE-STEP^{\circledR}$ and $ALL-BOND^{\circledR}$ 2) for each wall property. After positioning the iris on the dentin surface. composite resin was packed and light-cured. After 24 hours the shear bond strength was measured at a crosshead speed of 0.5 mm/min. Fracture analysis was performed using a microscope and SEM. The data was analyzed statistically by a two-way ANOV A and t-test. Results : The shear bond strength with metal iris was significant higher than those with dentin iris (p=0.034). Using $ONE-STEP^{\circledR}$, the shear bond strength with metal iris was significant higher than those with dentin iris (p=0.005), but not in $ALL-BOND^{\circledR}$ 2 (p=0.774). The incidence of cohesive failure was very lower than other shear bond strength tests that did not use iris method. Conclusions:The iris method may significantly reduce the cohesive failures in the substrates. According to the bonding agent systems. the shear bond strength was affected by the cavity wall property.

Analytical Simulation of Reversed Cyclic Lateral Behaviors of R.C. Shear Wall Subassemblages Using PERFORM 3D (PERFORM 3D를 이용한 RC 벽식 부분구조의 반전 횡하중 거동에 대한 해석적 모사)

  • Lee, Han-Seon;Jeong, Da-Hun;Hwang, Kyung-Ran;Park, Hong-Gun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.23-31
    • /
    • 2010
  • It is necessary to develop reliable but simple analytical models to predict the nonlinear response of reinforced concrete wall structures. In this study, experimental results on the cyclic reversed lateral behaviors of reinforced concrete shear wall assemblages are simulated analytically by using the wall, beam, and column models available in the PERFORM 3D program. Through the comparison of experimental and analytical results, the reliability and limitations of the analysis are evaluated. In addition, the information, which could not be obtained experimentally, such as the internal flow of force, the contribution of the flange walls, and the resisting mechanism of the walls with the contribution of the coupling beam, is provided.

Investigation of design values computation of wood shear walls constructed with structural foam sheathing

  • Shadravan, Shideh;Ramseyer, Chris C.
    • Advances in Computational Design
    • /
    • v.4 no.3
    • /
    • pp.223-238
    • /
    • 2019
  • This study investigated the ultimate lateral load capacity of shear walls constructed with several types of structural foam sheathing. Sixteen tests were conducted and the results were compared to the published design values commutated by the manufactures for each test series. The sheathing products included 12.7 mm (1/2 in) SI-Strong, 25.4 mm (1 in) SI-Strong, 12.7 mm (1/2 in) R-Max Thermasheath, and 2 mm (0.078 in) ThermoPly Green. The structural foam sheathing was attached per the manufacturers' specification to one side of the wood frame for each wall tested. Standard 12.7 mm (1/2 in) gypsum wallboard was screwed to the opposite side of the frame. Simpson HDQ8 tie-down anchors were screwed to the terminal studs at each end of the wall and anchored to the base of the testing apparatus. Both monotonic and cyclic testing following ASTM E564 and ASTM E2126, respectively, were considered. Results from the monotonic tests showed an 11 to 27 percent smaller capacity when compared to the published design values. Likewise, the test results from the cyclic tests showed a 24 to 45 percent smaller capacity than the published design values and did not meet the seismic performance design criteria computation.

Development of Machine Learning Based Seismic Response Prediction Model for Shear Wall Structure considering Aging Deteriorations (경년열화를 고려한 전단벽 구조물의 기계학습 기반 지진응답 예측모델 개발)

  • Kim, Hyun-Su;Kim, Yukyung;Lee, So Yeon;Jang, Jun Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.2
    • /
    • pp.83-90
    • /
    • 2024
  • Machine learning is widely applied to various engineering fields. In structural engineering area, machine learning is generally used to predict structural responses of building structures. The aging deterioration of reinforced concrete structure affects its structural behavior. Therefore, the aging deterioration of R.C. structure should be consider to exactly predict seismic responses of the structure. In this study, the machine learning based seismic response prediction model was developed. To this end, four machine learning algorithms were employed and prediction performance of each algorithm was compared. A 3-story coupled shear wall structure was selected as an example structure for numerical simulation. Artificial ground motions were generated based on domestic site characteristics. Elastic modulus, damping ratio and density were changed to considering concrete degradation due to chloride penetration and carbonation, etc. Various intensity measures were used input parameters of the training database. Performance evaluation was performed using metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analysis results show that neural networks and extreme gradient boosting algorithms present good prediction performance.

Static Experiment for the Seismic Performance of a 2 Story RC Shear Wall System (2층 RC 전단벽식 구조물의 내진성능에 대한 정적 실험)

  • Lee, Sang-Ho;Oh, Sang-Hoon;Hwang, Won-Tae;Lee, Kyung-Bo;Lee, Han-Seon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.55-65
    • /
    • 2010
  • The purpose of this experimental study is to evaluate the seismic performance of a 2 story RC shear wall system by the static reversal loading test. The lower 2 stories of the prototype structure were selected, and the specimens of this study were comprised of a T-type wall with an opening. The specimens were reduced to about 60% of the full scale size and were constructed to measure the result of the experimental variable regarding the existence of a lintel beam. To perform this study, the static repeated loading test was performed. According to the existence or absence of a lintel beam, the structural capacities and behavioral differences of the shear wall system were compared. The test results of this study showed that the specimen with a lintel beam underwent the seismic performance with an ultimate strength and ductility capacity better than the specimen without a lintel beam.

Analytical performance evaluation of modified inclined studs for steel plate concrete wall subjected to cyclic loads

  • Lim, Jin-Sun;Jeong, Young-Do;Nam, Jin-Won;Kim, Chun-Ho;Yi, Seong-Tae
    • Computers and Concrete
    • /
    • v.17 no.2
    • /
    • pp.227-240
    • /
    • 2016
  • An analytical study was conducted to investigate the effect of the shape and spacing of modified inclined studs used as shear connector between concrete and steel plate on the cyclic behavior of steel plate concrete (SC) shear wall. 9 different analysis cases were adopted to determine the optimized shape and spacing of stud. As the results, the skeleton curves were obtained from the load-displacement hysteresis curves, and the ultimate and yielding strengths were increased as the spacing of studs decrease. In addition, the strength of inclined studs is shown to be bigger compared to that of conventional studs. The damping ratios increased as the decrease of stiffness ratio. Finally, with decreasing the spacing distance of studs, the cumulative dissipated energy was increased and the seismic performance was improved.

Nonlinear Analysis of R/C Shear Walls Subjected to Inelastic Cyclic Loads by finite Element Mettled (비탄성 반복하중을 받는 철근콘크리트 전단벽의 비선형 유한요소 해석)

  • 윤현도;오영훈;최창식;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.55-60
    • /
    • 1990
  • The objective of this study is to predict the nonlinear behavior of reinforced concrete shear walls, with the reinforcement uniformly distributed, under reversed cyclic loads. This study introduces joint Element Model which formulates the pulling out of rebars, slipping and intrusion of junction planes. The applicability of this study was experimental verfied by specimens SW1, SW2 and SW3 tested by authors, Wall1 by Paulay, SW16 and SW19 by Sheu. In almost specimen, the ratio of analytical to experimental maximum shear stress is within approximately 5%. In case of energy dissipation and maximum drift, the analytical results fully coincide with those of experiment.

  • PDF

A Nonlinear Finite Element Analysis to Study the Behavior on Artificially Damaged R/C Shear Walls with Opening Configuration (개구부 설치를 위한 인위적 손상을 입은 전단벽에 관한 비선형 유한요소해석)

  • Han Min Ki;Park Wan Shin;Kim Hyo-Jin;Choi Gi-Bong;Choi Chang Sik;Yun Hyun Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.429-432
    • /
    • 2004
  • This paper discussed finite element method(FEM) models of the reinforced concrete rectangular shear walls with opening configuration and analysed under constant axial and monotonic lateral load using ABAQUS. The research comprises constitutive models to represent behavior of the materials that compose a wall on the basis of experimental data, development of techniques that are appropriate for analysis of reinforced concrete structures, verification, and calibration of the global model for reinforced concrete shear walls of increasing complexity. Results from the analyses of these FEM models offers significant insight into the flexural behavior of benchmark data.

  • PDF

Along and across-wind vibration control of shear wall-frame buildings with flexible base by using passive dynamic absorbers

  • Ivan F. Huergo;Hugo Hernandez-Barrios;Roberto Gomez-Martinez
    • Wind and Structures
    • /
    • v.38 no.1
    • /
    • pp.15-42
    • /
    • 2024
  • A flexible-base coupled-two-beam (CTB) discrete model with equivalent tuned mass dampers is used to assess the effect of soil-structure interaction (SSI) and different types of lateral resisting systems on the design of passive dynamic absorbers (PDAs) under the action of along-wind and across-wind loads due to vortex shedding. A total of five different PDAs are considered in this study: (1) tuned mass damper (TMD), (2) circular tuned sloshing damper (C-TSD), (3) rectangular tuned sloshing damper (R-TSD), (4) two-way liquid damper (TWLD) and (5) pendulum tuned mass damper (PTMD). By modifying the non-dimensional lateral stiffness ratio, the CTB model can consider lateral deformations varying from those of a flexural cantilever beam to those of a shear cantilever beam. The Monte Carlo simulation method was used to generate along-wind and across-wind loads correlated along the height of a real shear wall-frame building, which has similar fundamental periods of vibration and different modes of lateral deformation in the xz and yz planes, respectively. Ambient vibration tests were conducted on the building to identify its real lateral behavior and thus choose the most suitable parameters for the CTB model. Both alongwind and across-wind responses of the 144-meter-tall building were computed considering four soil types (hard rock, dense soil, stiff soil and soft soil) and a single PDA on its top, that is, 96 time-history analyses were carried out to assess the effect of SSI and lateral resisting system on the PDAs design. Based on the parametric analyses, the response significantly increases as the soil flexibility increases for both type of lateral wind loads, particularly for flexural-type deformations. The results show a great effectiveness of PDAs in controlling across-wind peak displacements and both along-wind and across-wind RMS accelerations, on the contrary, PDAs were ineffective in controlling along-wind peak displacements on all soil types and different kind of lateral deformation. Generally speaking, the maximum possible value of the PDA mass efficiency index increases as the soil flexibility increases, on the contrary, it decreases as the non-dimensional lateral stiffness ratio of the building increases; therefore, there is a significant increase of the vibration control effectiveness of PDAs for lateral flexural-type deformations on soft soils.