• Title/Summary/Keyword: R&D team

Search Result 1,468, Processing Time 0.029 seconds

Investigation of Early-Age Concrete Strength Development Using Hardening Accelerator (경화촉진제를 사용한 콘크리트의 초기강도 발현 특성 검토)

  • Kim, Gyu-Yong;Kim, Yong-Ro;Park, Jong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.309-316
    • /
    • 2016
  • In this study, performance of hardening accelerator types which promote setting and hardening of cement has been reviewed in order to develop early age strength of concrete with compressive strength of 21~27 MPa after examination of strength development of the concrete at early age according to curing temperature and unit cement(binder) content. As results, soluble mineral salt showed better hardening acceleration effect than organic salt in the scope of this study. Also, hydration reaction accelerating effect of $C_3S$ by Soluble mineral salt is effective on development of early age compressive strength and it was shown that the Pt's hydration reaction accelerating effect was the best. Construction duration reduction can be expected by securing compressive strength for prevention of early aged freezing damage in 25hour-curing time under curing temperature at $15^{\circ}C$. Also, it was shown that compressive strength of specimen cured at $5^{\circ}C$ was similar with plain specimen cured at $10^{\circ}C$. Therefore, it is expected that fuel costs and carbon dioxide can be reduced when the same construction duration is considered.

Spatial Correlation Based Fast Coding Depth Decision and Reference Frame Selection in HEVC (HEVC의 공간적 상관성 기반 고속 부호화 깊이 및 참조영상 결정 방법)

  • Lee, Sang-Yong;Kim, Dong-Hyun;Kim, Jae-Gon;Choi, Hae-Chul;Kim, Jin-Soo;Choi, Jin-Soo
    • Journal of Broadcast Engineering
    • /
    • v.17 no.5
    • /
    • pp.716-724
    • /
    • 2012
  • In this paper, we propose a fast decision method of maximum coding depth decision and reference frame selection in HEVC. To reduce computational complexity and encoding time of HEVC, two methods are proposed. In the first method, the maximum depth of each coding unit (CU) in a largest CU (LCU) is constrained by using the maximum coding depth used by adjacent LCUs based on the assumption that the spatial correlation is very high and rate-distortion (R-D) cost. And we constrain the number of reference pictures for prediction unit (PU) performing motion estimation by using the motion information of the upper depth PU. The proposed methods reduce computational complexity of the HEVC encoder by constraining the maximum coding depth and the reference frame. We could achieve about 39% computational complexity reduction with marginal bitrate increase of 1.2% in the comparison with HM6.1 HEVC reference software.

Evaluation of Fracture Behavior of Adhesive Layer in Fiber Metal Laminates using Cohesive Zone Models (응집영역모델을 이용한 섬유금속적층판 접착층의 모드 I, II 파괴 거동 물성평가)

  • Lee, Byoung-Eon;Park, Eu-Tteum;Ko, Dae-Cheol;Kang, Beom-Soo;Song, Woo-Jin
    • Composites Research
    • /
    • v.29 no.2
    • /
    • pp.45-52
    • /
    • 2016
  • An understanding of the failure mechanisms of the adhesive layer is decisive in interpreting the performance of a particular adhesive joint because the delamination is one of the most common failure modes of the laminated composites such as the fiber metal laminates. The interface between different materials, which is the case between the metal and the composite layers in this study, can be loaded through a combination of fracture modes. All loads can be decomposed into peel stresses, perpendicular to the interface, and two in-plane shear stresses, leading to three basic fracture mode I, II and III. To determine the load causing the delamination growth, the energy release rate should be identified in corresponding criterion involving the critical energy release rate ($G_C$) of the material. The critical energy release rate based on these three modes will be $G_{IC}$, $G_{IIC}$ and $G_{IIIC}$. In this study, to evaluate the fracture behaviors in the fracture mode I and II of the adhesive layer in fiber metal laminates, the double cantilever beam and the end-notched flexure tests were performed using the reference adhesive joints. Furthermore, it is confirmed that the experimental results of the adhesive fracture toughness can be applied by the comparison with the finite element analysis using cohesive zone model.

Lifestyle and Metabolic Syndrome among Male Workers in an Electronics Research and Development Company (한 전자제품 연구소 남자 종사자들의 생활습관실천과 대사증후군의 관련성)

  • Myong, Jun-Pyo;Kim, Hyoung-Ryoul;Kim, Yong-Kyu;Koo, Jung-Wan;Park, Chung-Yill
    • Journal of Preventive Medicine and Public Health
    • /
    • v.42 no.5
    • /
    • pp.331-336
    • /
    • 2009
  • Objectives : The objectives of this study were to determine the relationship between lifestyle-implementation and metabolic syndrome in an electronics research and development company, and to provide a foundation for health providers of health management programs for setting priorities. Methods : From July 1 to July 16, 2008 we carried out a descriptive cross-sectional survey. Consecutive workers of one R & D company in Seoul, Korea (N=2,079) were enrolled in study. A checklist for lifestyle (from the National Health Insurance Corporation) consisted of questions regarding diet, drinking, smoking and exercise. After the survey, researchers obtained data from health profiles for metabolic syndrome(waist-circumference, triglycerides, HDL cholesterol, blood pressure and fasting blood sugar level). Lifestyle was recorded as good or not good. Statistical analysis of metabolic syndrome and the lifestyle of subjects was done using multiple logistic regression analysis. Results : The prevalence of metabolic syndrome in our study gropu was 13.3% (N=277). After adjustment for age, the adjusted odds ratios (odds ratio, 95% confidence intervals) for metabolic syndrome increased in proportion to the number of bad habits: two (1.72, 1.23-2.44), three (2.47, 1.73-3.56), and four (3.63, 2.03-6.34). Relative to subjects eating both vegetables and meat', the OR for 'meat' eaters was 1.66 (1.18-2.31). Compared with 'nonsmokers and ever-smoker', the OR for 'current-smoker' was 1.62 (1.25-2.10). Compared with 'Healthy drinker', the OR for 'unhealthy drinker' was 1.38 (1.05-1.83). Conclusions : Poor lifestyle was associated with an increased likelihood of metabolic syndrome. These findings suggest that lifestyle-based occupational health interventions for young employees should include a specific diet, smoking cessation, and healthy-drinking programs.

Experimental Investigation into the Combustion Characteristics on the Co-firing of Biomass with Coal as a Function of Particle Size and Blending Ratio (바이오매스(우드펠릿) 혼소율 및 입자크기에 따른 연소 특성에 관한 연구)

  • Sh, Lkhagvadorj;Kim, Sang-In;Lim, Ho;Lee, Byoung-Hwa;Kim, Seung-Mo;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.1
    • /
    • pp.31-37
    • /
    • 2016
  • Co-firing of biomass with coal is a promising combustion technology in a coal-fired power plant. However, it still requires verifications to apply co-firing in an actual boiler. In this study, data from the Thermogravimetric analyzer(TGA) and Drop tube furnace(DTF) were used to obtain the combustion characteristics of biomass when co-firing with coal. The combustion characteristics were verified using experimental results including reactivity from the TGA and Unburned carbon(UBC) data from the DTF. The experiment also analyzed with the variation of the biomass blending ratio and biomass particle size. It was determined that increasing the biomass blending ratio resulted in incomplete chemical reactions due to insufficient oxygen levels because of the rapid initial combustion characteristics of the biomass. Thus, the optimum blending condition of the biomass based on the results of this study was found to be 5 while oxygen enrichment reduced the increase of UBC that occurred during combustion of blended biomass and coal.

Natural herbal extract complex induces the degradation of alcohol and acetaldehyde and reduces the breath alcohol concentration (천연소재복합물의 알코올 및 아세트알데히드 분해활성 및 호기중 알코올 농도 감소)

  • Hwang, Ji Hong;Kim, Mi-Yeon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.381-392
    • /
    • 2020
  • This study is purposed to check up the natural 12 kinds of herbal extracts suitable for hangover and based on the results of contents of phenolic compounds, ABTS radical scavenging activity, alcohol dehydrogenase (ADH), and acetaldehyde dehydrogenase (ALDH). Selected 8 kinds of herbal extracts are blended according to the efficacy and the pearson's correlation between each content and activity. C. sinensis var. sinensis, P. densiflora Gnarl and P. lobata Ohwi showed excellent ADH activity, P. lobata Ohwi had a strong correlation between the content and efficacy, and C. sinensis var. sinensis, P. densiflora Gnarl had a negative correlation. Through the ADH and ALDH activity test of F.1 to F.7, the F.7 showed the highest synergic effect and selected as an optimal formulation. F.7 intake-group, the breath alcohol concentration was significantly reduced to 58% after 30 minutes and 27% after 120 minutes, compared to right after alcohol consumption. After alcohol consumption, there was a significant improvement effect (p<0.05) in tired and thirst in the intake group compared to the non-intake group.

Development of High Performance Nanocomposites using Functionalized Plant Oil Resins (식물성오일 레진을 이용한 고기능성 나노 복합재료의 개발)

  • Han, Song-Yi;Jung, Young-Hee;Oh, Jeong-Seok;Kaang, Shin-Young;Hong, Chang-Kook
    • Elastomers and Composites
    • /
    • v.47 no.1
    • /
    • pp.2-8
    • /
    • 2012
  • In this study, in order to develop renewable bio-based nanocomposites, multi-functional nanocomposites from soybean resins (AESO, MAESO) and nanoclay were prepared. Photoelectrodes for environmental friendly dye-sensitized solar cell using soybean resin were also prepared. Organo-modified nanoclay was directly dispersed in functionalized soybean resins after mixing with styrene as a comonomer and radical initiator was used to copolymerize the nanocomposites. The observed morphology was a mixture of intercalated/exfoliated structure and the physical properties were improved by adding nanoclay. A nanocomposite using MAESO, which added COOH functional group to the soybean resin, showed better dispersibility than AESO composites. Ultrasonic treatment of the nanocomposites also improved the physical properties. Nanoporous $TiO_2$ photoelectrode was also prepared using soybean resins as a binder, after acid-treatment of $TiO_2$ surface using nitric acid. Dye-sensitized solar cells were prepared after adsorbing dye molecules on it. The $TiO_2$ photoelectrode prepared using soybean binder had high current density because of increased surface area by improved dispersibility. The photoelectrochemical properties and conversion efficiency of the solar cell were significantly improved using the soybean binder.

Estimation of Slime Thickness of Bored Piles by Using Borehole Electrical Resistivity Method (시추공 전기비저항 기법을 활용한 현장타설말뚝의 슬라임층 두께 평가)

  • Chun, Ok-Hyun;Lee, Jong-Sub;Park, Min-Chul;Bae, Sung-Gyu;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.3
    • /
    • pp.51-60
    • /
    • 2013
  • The slime, deposited in the bored pile due to falling soil particle, reduces the bearing capacity of bored pile and thus the stability of construction also decreases. The weight pendulum and iron have been used for estimating the slime thickness based on the subjective judgment and thus the previous method has a limitation of reliability. The objective of this paper is to suggest the method for estimating the slime thickness by using characteristics of electrical resistivity as scientific method. The temperature-compensation resistivity probe (TRP), which has a conical shape and the diameter of 35.7mm, is applied to the measurement of the electrical resistivity in the borehole during penetration. The field tests are carried out for estimating the slime thickness in the application site of bored pile. The slime thickness is calculated through the difference between excavation depth of borehole and measured data. Furthermore, the laboratory tests are also conducted for investigating effects of casing, time elapsing and relative density by using the specimen of slime. The laboratory test supporting the suggested method is reasonable for determining the slime depth. The paper suggests that the electrical resistivity method may be a useful method for detecting slime thickness and the method is expected to be applicable to various sites of bored piles.

A Study on Estimation of Failure Probability of Allowable Stress Design using Reliability Analysis to the Bearing Capacity the Deep Water Depth Large-diameter Drilled Shaft (대수심 대구경 현장타설말뚝의 지지력에 대한 신뢰성 해석을 이용한 허용응력 설계의 파괴확률 평가 연구)

  • Han, Yushik;Lee, Yunkyu;Choi, Yongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.4
    • /
    • pp.43-51
    • /
    • 2014
  • A Large-diameter drilled shaft of deep water depth composite foundation supporting a high rise pylon of the test designed super long span bridge was designed by allowable stress design method and failure probability through reliability analysis to bearing capacity was estimated. The allowable stress design results for the bearing capacity of a drilled shaft were analyzed by reliability analysis and the probability of failure shows 0.12 % in case of CFEM, 0.0002 % in case of Korea Highway Corporation criterion, and 0.003 % in case of structure foundation design criterion. In the allowable stress design, the bearing capacity of a large-diameter drilled shaft was obtained by applying to safety factor 3 and reliability analysis for the results was done. If the failure probability suggested by AASHTO(2007) specification is set to 0.02 %, the socketed length of a drilled shaft shows an increase of 25 % in CFEM, decrease of 60 % in KHCC, and decrease of 89 % in SFDC.

Prediction of Fracture Strength of Woven CFRP Laminates According to Fiber Orientation (평직 CFRP 적층복합재료의 섬유배열각도에 따른 파괴강도 예측)

  • Kang, Min-Sung;Park, Hong-Sun;Choi, Jung-Hun;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.881-887
    • /
    • 2012
  • CFRP composite materials have been widely used in various fields of engineering because of their excellent properties. They show high specific stiffness and specific strength compared with metallic materiasl. Woven CFRP composite materials are fabricated from carbon fibers with two orientation angles ($0^{\circ}/90^{\circ}$), which influences the mechanical properties. Therefore, woven CFRP composite materials show different types of fracture behavior according to the load direction. Therefore, the fracture behavior of these materials needs to be evaluated according to the load direction when designing structures using these materials. In this study, we evaluate the fracture strength of plain-woven CFRP composite materials according to the load direction. We performed tests for six different angles (load direction: $0^{\circ}/90^{\circ}$, $30^{\circ}/-60^{\circ}$, $+45^{\circ}/-45^{\circ}$) and estimated the fracture strength for an arbitrary fiber angle by using the modified Tan's theory and harmonic function.