• 제목/요약/키워드: Quorum system

검색결과 73건 처리시간 0.028초

세균의 적정밀도 인식을 통한 신호전달 및 신호전달 차단 연구 (Bacterial Quorum Sensing and Anti-Quorum Sensing)

  • 박순양;이정기
    • 한국미생물·생명공학회지
    • /
    • 제32권1호
    • /
    • pp.1-10
    • /
    • 2004
  • Many bacteria monitor their population density and control the expression of specialized gene sets in response to bacterial cell density based on a mechanism referred to as quorum sensing. In all cases, quorum sensing involves the production and detection of extracellular signaling molecules, auto inducers, as which Gram-negative and Gram-positive bacteria use most prevalently acylated homoserine lactones and processed oligo-peptides, respectively. Through quorum-sensing communication circuits, bacteria regulate a diverse array of physiological functions, including virulence, symbiosis, competence, conjugation, antibiotic production, motility, sporulation, and biofilm formation. Many pathogens have evolved quorum-sensing mechanisms to mount population-density-dependent attacks to over-whelm the defense responses of plants, animals, and humans. Since these AHL-mediated signaling mechanisms are widespread and highly conserved in many pathogenic bacteria, the disruption of quorum-sensing system might be an attractive target for novel anti-infective therapy. To control AHL-mediated pathogenicity, several promising strategies to disrupt bacterial quorum sensing have been reported, and several chemicals and enzymes have been also investigated for years. These studies indicate that anti-quorum sensing strategies could be developed as possible alternatives of antibiotics.

A Survey on Asynchronous Quorum-Based Power Saving Protocols in Multi-Hop Networks

  • Imani, Mehdi;Joudaki, Majid;Arabnia, Hamid R.;Mazhari, Niloofar
    • Journal of Information Processing Systems
    • /
    • 제13권6호
    • /
    • pp.1436-1458
    • /
    • 2017
  • Quorum-based algorithms are widely used for solving several problems in mobile ad hoc networks (MANET) and wireless sensor networks (WSN). Several quorum-based protocols are proposed for multi-hop ad hoc networks that each one has its pros and cons. Quorum-based protocol (QEC or QPS) is the first study in the asynchronous sleep scheduling protocols. At the time, most of the proposed protocols were non-adaptive ones. But nowadays, adaptive quorum-based protocols have gained increasing attention, because we need protocols which can change their quorum size adaptively with network conditions. In this paper, we first introduce the most popular quorum systems and explain quorum system properties and its performance criteria. Then, we present a comparative and comprehensive survey of the non-adaptive and adaptive quorum-based protocols which are subsequently discussed in depth. We also present the comparison of different quorum systems in terms of the expected quorum overlap size (EQOS) and active ratio. Finally, we summarize the pros and cons of current adaptive and non-adaptive quorum-based protocols.

지연 민감형 IoT 응용을 위한 GQS 기반 포그 Pub/Sub 시스템의 설계 및 평가 (Drsign and Evaluation of a GQS-based Fog Pub/Sub System for Delay-Sensitive IoT Applications)

  • 배인한
    • 한국멀티미디어학회논문지
    • /
    • 제20권8호
    • /
    • pp.1369-1378
    • /
    • 2017
  • Pub/Sub (Publish/Subscribe) paradigm is a simple and easy to use model for interconnecting applications in a distributed environment. In general, subscribers register their interests in a topic or a pattern of events and then asynchronously receive events matching their interest, regardless of the events' publisher. In order to build a low latency lightweight pub/sub system for Internet of Things (IoT) services, we propose a GQSFPS (Group Quorum System-based Fog Pub/Sub) system that is a core component in the event-driven service oriented architecture framework for IoT services. The GQSFPS organizes multiple installed pub/sub brokers in the fog servers into a group quorum based P2P (peer-to-peer) topology for the efficient searching and the low latency accessing of events. Therefore, the events of IoT are cached on the basis of group quorum, and the delay-sensitive IoT applications of edge devices can effectively access the cached events from group quorum fog servers in low latency. The performance of the proposed GQSFPS is evaluated through an analytical model, and is compared to the GQPS (grid quorum-based pud/sub system).

Interaction Between the Quorum Sensing and Stringent Response Regulation Systems in the Enterohemorrhagic Escherichia coli O157:H7 EDL933 Strain

  • Oh, Kyung-Hwan;Cho, Seung-Hak
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권3호
    • /
    • pp.401-407
    • /
    • 2014
  • Quorum sensing and the stringent response are well-known regulation systems for the expression of virulence genes in enterohemorrhagic Escherichia coli (EHEC). However, how these two systems interact is not well known. E. coli strains with mutations in two regulation systems, ${\Delta}luxS$ (ECM101) and ${\Delta}luxS{\Delta}relA{\Delta}spoT$ (ECM201), and the ${\Delta}luxS$ complement strain to ECM201 (ECM202) were created from EHEC O157:H7 EDL933 to investigate how the regulatory systems interact. The phenotypic changes of the mutant strains were characterized and compared with the wild type. The mutant strains exhibited no obvious growth defects, although acid resistance and cellular cytotoxicity were decreased significantly in all the mutant strains. Phenotypic characterization revealed that mutations in the stringent response system (ECM201 and ECM202) influenced the metabolic (defective utilization of arabinose and L-sorbose) and enzymatic activities (decreased trypsin activity, and increased ${\alpha}$-glucosidase activity). In contrast, the quorum sensing system mutant (ECM101) did not display these phenotypes. The motility of the quorum sensing system mutant (ECM101) was unchanged, but mutation in the stringent response system influenced the motility. Our results suggest that quorum sensing interacts with the stringent response regulation system.

Acyl-Homoserine lactone Quorum Sensing in Bactreria

  • Greenberg, E.Peter
    • Journal of Microbiology
    • /
    • 제38권3호
    • /
    • pp.117-121
    • /
    • 2000
  • Recent advances in studies of bacterial gene expression and light microscopy show that cell-to cell communication and communication and community behavior are the rule rather than the exception. One type of cell-cell communication, quorum sensing in Gram-negative bacteria involves acyl-homoserine lactone signals. This type of quorum sension represents a dedicated communication system that enables a given species to sense when it has reached a critical population density. and to respond by activating expression of specific genes. The LuxR and LuxI proteins of Vibrio fisheri are the founding members of the acyl-homoserine lactone quorum sensing signal receptor and signal generator families of proteins. Acyl-homeserine lactone signaling in Pseudomonas aeruginosa is one model for the relationship between quorum sensing community behavior, and virulence. In the P. aeruginosa model. quorum sensing is required for normal biofilm maturation and virulence. There are multiple quorum-sensing circuits that control the expression of dozens of specific genes in P. aeruginosa.

  • PDF

고 가용성 분산 시스템을 위한 효율적인 하이브리드 복제 프로토콜 (An Efficient Hybrid Replication Protocol for High Available Distributed System)

  • 윤희용;최성춘
    • 정보처리학회논문지A
    • /
    • 제12A권2호
    • /
    • pp.171-180
    • /
    • 2005
  • 분산 시스템에서 가용성을 높이고 전체 시스템의 성능을 향상시키기 위해 데이터는 여러 노드에 중복하여 저장된다. 여기서는 전역적 접근제어를 위해서 읽기/쓰기 동작을 수행하는데 필요한 노드의 집합을 정의하는 Quorum 프로토콜이 존재한다. Quorum 프로토콜을 사용하는 대표적인 복제 프로토콜인 Tree Quorum 프로토콜은 트리의 높이가 증가할수록 노드의 수가 기하급수적으로 증가하고, Grid 프로토콜은 노드에 장애가 발생하지 않아도 언제나 같은 읽기/쓰기 비용을 갖는다는 단점을 갖고 있다. 따라서, 본 논문에서는 기존 프로토콜의 장점을 가지면서 단점을 해결할 수 있는 새로운 하이브리드 프로토콜을 제안한다. 제안된 하이브리드 프로토콜은 전체적으로는 트리 구조를 가지면서 각 레벨에서는 그리드의 열과 같은 구조를 가짐으로써 노드에 장애가 없을 때에는 Tree Quorum 프로토콜과 같이 적은 동작 비용을 요구하며, 노드에 장애가 존재할 경우에도 기존 프로토콜에 비해 상대적으로 적은 동자 비용과 높은 가용성을 보인다. 그러므로 높은 데이터 가용성이 요구되는 서바이벌 스토리지 시스템에 효율적으로 적용 가능하다. 본 논문에서는 수학적 모델링을 통하여 제안된 프로토콜의 비용과 가용성을 평가하고, 시뮬레이션을 통해 응답시간과 처리율을 기존의 Tree quorum프로토콜과 비교한다.

Quorum based Peer to Peer Key Sharing Protocol over Wireless Sensor Networks

  • Yang, Soong-Yeal;Won, Nam-Sik;Kim, Hyun-Sung;Lee, Sung-Woon
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 2008년도 추계 공동 국제학술대회
    • /
    • pp.445-448
    • /
    • 2008
  • The key establishment between nodes is one of the most important issues to secure the communication in wireless sensor networks. Some researcher used the probabilistic key sharing scheme with a pre-shared key pool to reduce the number of keys and the key disclosure possibility. However, there is a potential possibility that some nodes do not have a common share in the key pool. The purpose of this paper is to devise a peer to peer key sharing protocol (PPKP) based on Quorum system and Diffie-Hellman key exchange scheme (DHS). The PPKP establishes a session key by creating a shared key using the DHS and then scrambles it based on Quorum system to secure that. The protocol reduces the number of necessary keys than the previous schemes and could solve the non-common key sharing possibility problem in the probabilistic schemes.

  • PDF

The Role of AiiA, a Quorum-Quenching Enzyme from Bacillus thuringiensis, on the Rhizosphere Competence

  • Park, Su-Jin;Park, Sun-Yang;Ryu, Choong-Min;Park, Seung-Hwan;Lee, Jung-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권9호
    • /
    • pp.1518-1521
    • /
    • 2008
  • Bacteria sense their population density and coordinate the expression of target genes, including virulence factors in Gram-negative bacteria, by the N-acylhomoserine lactones (AHLs)-dependent quorum sensing (QS) mechanism. In contrast, several soil bacteria are able to interfere with QS by enzymatic degradation of AHLs, referred to as quorum quenching. A potent AHL-degrading enzyme, AiiA, from Bacillus thuringiensis has been reported to effectively attenuate the virulence of bacteria by quorum quenching. However, little is known about the role of AiiA in B. thuringiensis itself. In the present study, an aiiA-defective mutant was generated to investigate the role of AHA in rhizosphere competence in the root system of pepper. The aiiA mutant showed no detectable AHL¬-egrading activity and was less effective for suppression of soft-rot symptom caused by Erwinia carotovora on the potato slice. On the pepper root, the survival rate of the aiiA mutant significantly decreased over time compared with that of wild type. Interestingly, viable cell count analysis revealed that the bacterial number and composition of E. carotovora were not different between treatments of wild type and the aiiA mutant. These results provide evidence that AHA can play an important role in rhizosphere competentce of B. thuringiensis and bacterial quorum quenching to Gram-negative bacteria without changing bacterial number or composition.

Energy-Efficient Quorum-Based MAC Protocol for Wireless Sensor Networks

  • Annabel, L. Sherly Puspha;Murugan, K.
    • ETRI Journal
    • /
    • 제37권3호
    • /
    • pp.480-490
    • /
    • 2015
  • The reliability of sensor networks is generally dependent on the battery power of the sensor nodes that it employs; hence it is crucial for the sensor nodes to efficiently use their battery resources. This research paper presents a method to increase the reliability of sensor nodes by constructing a connected dominating tree (CDT), which is a subnetwork of wireless sensor networks. It detects the minimum number of dominatees, dominators, forwarder sensor nodes, and aggregates, as well as transmitting data to the sink. A new medium access control (MAC) protocol, called Homogenous Quorum-Based Medium Access Control (HQMAC), is also introduced, which is an adaptive, homogenous, asynchronous quorum-based MAC protocol. In this protocol, certain sensor nodes belonging to a network will be allowed to tune their wake-up and sleep intervals, based on their own traffic load. A new quorum system, named BiQuorum, is used by HQMAC to provide a low duty cycle, low network sensibility, and a high number of rendezvous points when compared with other quorum systems such as grid and dygrid. Both the theoretical results and the simulation results proved that the proposed HQMAC (when applied to a CDT) facilitates low transmission latency, high delivery ratio, and low energy consumption, thus extending the lifetime of the network it serves.

Quorum-based Key Management Scheme in Wireless Sensor Networks

  • Wuu, Lih-Chyau;Hung, Chi-Hsiang;Chang, Chia-Ming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권9호
    • /
    • pp.2442-2454
    • /
    • 2012
  • To ensure the security of wireless sensor networks, it is important to have a robust key management scheme. In this paper, we propose a Quorum-based key management scheme. A specific sensor, called as key distribution server (KDS), generates a key matrix and establishes a quorum system from the key matrix. The quorum system is a set system of subsets that the intersection of any two subsets is non-empty. In our scheme, each sensor is assigned a subset of the quorum system as its pre-distributed keys. Whenever any two sensors need a shared key, they exchange their IDs, and then each sensor by itself finds a common key from its assigned subset. A shared key is then generated by the two sensors individually based on the common key. By our scheme, no key is needed to be refreshed as a sensor leaves the network. Upon a sensor joining the network, the KDS broadcasts a message containing the joining sensor ID. After receiving the broadcast message, each sensor updates the key which is in common with the new joining one. Only XOR and hash operations are required to be executed during key update process, and each sensor needs to update one key only. Furthermore, if multiple sensors would like to have a secure group communication, the KDS broadcasts a message containing the partial information of a group key, and then each sensor in the group by itself is able to restore the group key by using the secret sharing technique without cooperating with other sensors in the group.