• 제목/요약/키워드: Quincunx wavelets

검색결과 6건 처리시간 0.02초

이중 밀도 웨이브렛 변환의 성능 향상을 위한 Quincunx 표본화 기법 (Quincunx Sampling Method For Improvement of Double-Density Wavelet Transformation)

  • 임중희;신종홍
    • 디지털산업정보학회논문지
    • /
    • 제8권1호
    • /
    • pp.171-181
    • /
    • 2012
  • This paper introduces the double-density discrete wavelet transform(DWT) using quincunx sampling, which is a DWT that combines the double-density DWT and quincunx sampling method, each of which has its own characteristics and advantages. The double-density DWT is an improvement upon the critically sampled DWT with important additional properties: Firstly, It employs one scaling function and two distinct wavelets, which are designed to be offset from one another by one half. Secondly, the double-density DWT is overcomplete by a factor of two, and Finally, it is nearly shift-invariant. In two dimensions, this transform outperforms the standard DWT in terms of denoising; however, there is room for improvement because not all of the wavelets are directional. That is, although the double-density DWT utilizes more wavelets, some lack a dominant spatial orientation, which prevents them from being able to isolate those directions. A solution to this problem is a quincunx sampling method. The quincunx lattice is a sampling method in image processing. It treats the different directions more homogeneously than the separable two dimensional schemes. Proposed wavelet transformation can generate sub-images of multiple degrees rotated versions. Therefore, This method services good performance in image processing fields.

방향의 선택성 향상을 통한 이중 밀도 이산 웨이브렛 변환의 성능 개선 (Improvement of Double Density Discrete Wavelet Transformation with Enhancement of Directional Selectivity)

  • 임중희;신종홍;지인호
    • 한국인터넷방송통신학회논문지
    • /
    • 제12권2호
    • /
    • pp.221-232
    • /
    • 2012
  • 이중 밀도 이산 웨이브렛 변환은 정밀하게 표본화되는 이산 웨이브렛 변환에 중요한 특징을 추가하여 그 성능을 개선한 것이다. 우선적으로 이 변환은 하나의 스케일링 함수와 두 개의 웨이브렛 함수로 구성된다. 즉, 3개 채널로 분해가 되며 두 웨이브렛 함수는 주파수 대역을 1/2씩 분할하도록 설계되었다. 따라서 입력 데이터보다 더 많은 양의 부대역 데이터들을 생성하면서도 완전재생을 만족한다. 또한 근사적으로 이동 불변의 특징을 만족하도록 설계되었다. 그러나 웨이브렛들이 모든 방향성을 반영하지 못하는 제약성을 갖는다. 즉, 이중 밀도 이산 웨이브렛 변환이 기존의 웨이브렛 변환보다 우수하지만, 다양한 방향성의 부족으로 그에 대한 처리가 제약받는다. 본 논문에서 제안된 방법은 이중 밀도 이산 웨이브렛 변환에 quincunx 표본화를 결합하여 각각의 장점을 얻도록 하였다. 특히, quincunx 표본화는 더 많은 방향성을 생성할 수 있다. 결과적으로 제안된 방법이 다양한 각도의 회전된 부영상을 생성할 수 있기 때문에 영상처리 영역에서 향상된 성능을 제공할 수 있다.

Medical Image Compression Using Quincunx Wavelets and SPIHT Coding

  • Beladgham, Mohammed;Bessaid, Abdelhafid;Taleb-Ahmed, Abdelmalik;Boucli Hacene, Ismail
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권2호
    • /
    • pp.264-272
    • /
    • 2012
  • In the field of medical diagnostics, interested parties have resorted increasingly to medical imaging. It is well established that the accuracy and completeness of diagnosis are initially connected with the image quality, but the quality of the image is itself dependent on a number of factors including primarily the processing that an image must undergo to enhance its quality. This paper introduces an algorithm for medical image compression based on the quincunx wavelets coupled with SPIHT coding algorithm, of which we applied the lattice structure to improve the wavelet transform shortcomings. In order to enhance the compression by our algorithm, we have compared the results obtained with those of other methods containing wavelet transforms. For this reason, we evaluated two parameters known for their calculation speed. The first parameter is the PSNR; the second is MSSIM (structural similarity) to measure the quality of compressed image. The results are very satisfactory regarding compression ratio, and the computation time and quality of the compressed image compared to those of traditional methods.

2차원 고밀도 이산 웨이브렛 변환의 성능 향상을 위한 Quincunx 표본화 기법 (Quincunx Sampling Method for Performance Improvement of 2D High-Density Wavelet Transformation)

  • 임중희;신종홍;지인호
    • 한국인터넷방송통신학회논문지
    • /
    • 제13권4호
    • /
    • pp.179-191
    • /
    • 2013
  • 영상처리에서 quincunx 격자를 사용하는 기법은 대표적인 비분리의 표본화 기법이다. 이 방법은 기존의 이차원 분리가능처리 기법보다 더 많은 다양한 방향성을 가지며 대역적 특성도 우수하다. 고밀도 이산 웨이브렛 변환은 N개의 입력 신호를 M개의 변환 계수들로 확장하는 변환이다(M>N). 이차원 처리에서 이 고밀도 이산 웨이브렛 변환의 이동불변의 장점은 표준 이산 웨이브렛 변환보다 더 우수하다. 그래서 이 변환은 다른 많은 웨이브렛보다 더 유용하게 사용될 수 있지만 표본화율이 높은 단점도 존재한다. 본 논문에서는 quincunx 표본화를 사용하는 고밀도 이산 웨이브렛 변환을 제안하였다. 이 방법은 고밀도 이산 웨이브렛과 비분리 처리의 특징을 유지하고 조합하는 방법이다. 제안된 방법은 영상처리 응용분야에서 좋은 성능을 갖는다.

이중 밀도 웨이브렛 변환의 성능 향상을 위한 3방향 분리 처리 기법 (The Three Directional Separable Processing Method for Double-Density Wavelet Transformation Improvement)

  • 신종홍
    • 디지털산업정보학회논문지
    • /
    • 제8권2호
    • /
    • pp.131-143
    • /
    • 2012
  • This paper introduces the double-density discrete wavelet transform using 3 direction separable processing method, which is a discrete wavelet transform that combines the double-density discrete wavelet transform and quincunx sampling method, each of which has its own characteristics and advantages. The double-density discrete wavelet transform is nearly shift-invariant. But there is room for improvement because not all of the wavelets are directional. That is, although the double-density DWT utilizes more wavelets, some lack a dominant spatial orientation, which prevents them from being able to isolate those directions. The dual-tree discrete wavelet transform has a more computationally efficient approach to shift invariance. Also, the dual-tree discrete wavelet transform gives much better directional selectivity when filtering multidimensional signals. But this transformation has more cost complexity Because it needs eight digital filters. Therefor, we need to hybrid transform which has the more directional selection and the lower cost complexity. A solution to this problem is a the double-density discrete wavelet transform using 3 direction separable processing method. The proposed wavelet transformation services good performance in image and video processing fields.

비분리 고밀도 이산 웨이브렛 변환을 이용한 디지털 영상처리 (Digital Image Processing Using Non-separable High Density Discrete Wavelet Transformation)

  • 신종홍
    • 디지털산업정보학회논문지
    • /
    • 제9권1호
    • /
    • pp.165-176
    • /
    • 2013
  • This paper introduces the high density discrete wavelet transform using quincunx sampling, which is a discrete wavelet transformation that combines the high density discrete transformation and non-separable processing method, each of which has its own characteristics and advantages. The high density discrete wavelet transformation is one that expands an N point signal to M transform coefficients with M > N. The high density discrete wavelet transformation is a new set of dyadic wavelet transformation with two generators. The construction provides a higher sampling in both time and frequency. This new transform is approximately shift-invariant and has intermediate scales. In two dimensions, this transform outperforms the standard discrete wavelet transformation in terms of shift-invariant. Although the transformation utilizes more wavelets, sampling rates are high costs and some lack a dominant spatial orientation, which prevents them from being able to isolate those directions. A solution to this problem is a non separable method. The quincunx lattice is a non-separable sampling method in image processing. It treats the different directions more homogeneously than the separable two dimensional schemes. Proposed wavelet transformation can generate sub-images of multiple degrees rotated versions. Therefore, This method services good performance in image processing fields.