• Title/Summary/Keyword: Quick Torque Control

Search Result 40, Processing Time 0.022 seconds

Disturbance Observer Based Anti-slip Re-adhesion Control for Electric Motor Coach

  • Miyashita, Ichiro;Kadowaki, Satoshi;Ohishi, Kiyoshi;Lee, Hyun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.334-340
    • /
    • 2002
  • This paper proposes a new anti-slip re-adhesion control system fur electric railway vehicle driven by inverter-fed induction motors. This paper introduces an instantaneous tangential farce coefficient estimator between driving wheel and rail, which is based on disturbance observer. The torque command of proposed system regulates to exceed this estimated tangential farce coefficient in order to avoid undesirable slip phenomenon of driving wheels. We have already proposed the anti-slip re-adhesion control system based on disturbance observer for simplified one wheel equivalent model successfully. This paper extend to this system to the actual bogie system, which has four driving wheels driven by two induction motors fed by one inverter. In order to apply anti-slip re-adhesion control to the actual bogie system a new anti-slip re-adhesion control based on both disturbance observer and speed sensor-less vector control of induction motor with quick response are combined. The experimental results and the numerical simulation results prove the validity of the proposed control system.

  • PDF

Torque Distribution Algorithm of Independent Drive Articulated Vehicle for Small Radius Turning Performance (독립 구동 굴절차량의 회전반경 감소를 위한 토크분배 알고리즘)

  • Lee, Kibeom;Hwang, Karam;Tak, Junyoung;Suh, In-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.5
    • /
    • pp.336-341
    • /
    • 2014
  • The articulated structures seen in train or tram applications are being applied in road transportation systems, for use in mass passenger transit. When articulated vehicles are driven on public roads, they no longer follow a guided track. Therefore, there are a lot of control elements that need to be considered, such as turning radius, swept path width, off-tracking, and swing-out. Some of the currently available articulated vehicles on roads are equipped with an independent drive system; a system that has one motor at each wheel. Through this drive system, each wheel can be independently controlled, making precise and quick dynamic stability control possible. In this paper, we propose a torque distribution algorithm that can reduce the overall turning radius of the articulated vehicle, which has been verified through dynamic simulation.

Experimental evaluation of pumpjet propulsor for an axisymmetric body in wind tunnel

  • Suryanarayana, Ch.;Satyanarayana, B.;Ramji, K.;Saiju, A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.1
    • /
    • pp.24-33
    • /
    • 2010
  • Design of a Pump Jet Propulsor (PJP) was undertaken for an underwater body with axisymmetric configuration using axial/low compressor design techniques supported by Computational Fluid Dynamics (CFD) analysis for performance prediction. Experimental evaluation of the PJP was earned out through experiments in a Wind Tunnel Facility (WTF) using momentum defect principle for propulsive performance prior to proceeding with extensive experimental evaluation in towing tank and cavitation tunnel. Experiments were particularly conducted with respect to Self Propulsion Point (SPP), residual torque and thrust characteristics over a range of vehicle advance ratio in order to ascertain whether sufficient thrust is developed at the design condition with least possible imbalance torque left out due to residual swirl in the slip stream. Pumpjet and body models were developed for the propulsion tests using Aluminum alloy forged material. Tests were conducted from 0 m/s to 30 m/s at four rotational speeds of the PJP. SPP was determined confirming the thrust development capability of PJP. Estimation of residual torque was carried out at SPP corresponding to speeds of 15, 20 and 25 m/s to examine the effectiveness of the stator. Estimation of thrust and residual torque was also carried out at wind speeds 0 and 6 m/s for PJP RPMs corresponding to self propulsion tests to study the propulsion characteristics during the launch of the vehicle m water where advance ratios are close to Zero. These results are essential to assess the thrust performance at very low advance ratios to accelerate the body and to control the body during initial stages. This technique has turned out to be very useful and economical method for quick assessment of overall performance of the propulsor and generation of exhaustive fluid dynamic data to validate CFD techniques employed.

Development of a Screw Type Super-Charger for Part Load Control of Passenger Car (승용차의 부분부하제어를 위한 스크류형 과급기 개발)

  • Bea, Jae-Il;Bae, Sin-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1427-1434
    • /
    • 2003
  • Turbo- or Super-charging has been used to boost engine power for Gasoline- and Diesel Engine since beginning of 20th century. So far turbo-charger has enjoyed a high reputation in the charging field for its technical advantages such as no demand of operation power from engine and an excellent charging effect in a static operation at mid- and high engine speed. A mechanically driven super-charger, however, is now popular due to the high engine power at quick change of the driving mode - high engine torque even at low engine speed. Since super-charger needs operation power from engine, it is difficult to improve its relatively higher fuel consumption than that of turbo-charger. This negative point is still an obstacle to the wide use of supercharger. Super-charger using screw-type compressor will fulfill the purpose to reduce fuel consumption by minimizing operation power owing to no charge at idling or part load driving condition. This study aims to develop power control concept to achieve the minimization of operation power. A screw type super-charger was modified in design partially and installed with an internal bypass valve and a bypass tube to control charging pressure at part load. The various control concepts show a possibility to reduce operation power of super-charger.

The Study on the Control Performance of a Screw Type Super-charger for Automotive Use (자동차용 스크류형 과급기의 제어성능에 관한 연구)

  • 배재일;배신철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.21-29
    • /
    • 2003
  • Boosting of engine power by using Turbo- or Super-charger is a solution to comply with $CO_2$-regulation in Europe. Turbo-charger is now playing a major role in the field of charging system thank to its technical advantages such as no demand of operation power from engine. A mechanically driven Super-charger, however, is now popular due to quick speed response to change of the driving mode-high engine torque even at low engine speed. Since Super-charger needs operation power from engine, it is difficult to improve its relatively higher fuel consumption than that of Turbo-charger. This negative point is still an obstacle to the wide use of Super-charger. This study aims to develop power control concept to achieve the minimization of operation power when it is not necessary to charge at idling or part load driving condition. A screw type Super-charger was modified in design partially and adapted an internal bypass valve and a bypass tube to control charging pressure at part load. The various control concepts show a possibility to reduce operation power of Super-charger and result in improvement of fuel consumption.

Modeling and Dynamic Analysis of Electro-mechanical System in Machine Tools(2$^{nd}$ Report) - Modeling and Dynamic Analysis of Feed Drive System - (공작기계 시스템의 모델링과 동적특성 분석 (제2보) - 이송계의 모델링과 동적특성 분석 -)

  • Park, Yong-Hwan;Shin, Heung-Chul;Moon, Hee-Sung;Choe, Song-Yul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.218-224
    • /
    • 1999
  • In the feed drive systems of machine tools that consist of many mechanical components such as motor, coupling, ballscrew, nut or table, a torsional vibration is often generated because of its elastic elements in torque transmission. Generally, the accuracy of motion control system is strongly influenced by the dynamic behavior of coupled transmission components. Especially, a torsional vibration caused by the elasticity of mechanical elements might deteriorate the quick movement of system and lead to shorten the life time of the mechanical transmission elements. So, it is necessary to analyze the electromechanical system mathematically to optimize the dynamic characteristics of the feed system. In this paper, the mathematical model of a feed drive system was developed and its mechanical characteristics were analyzed on the basis of the proposed model. The design concepts of speed control loop to stabilize a feed drive system were also proposed.

  • PDF

Modeling and Dynamic Analysis of Electromechanical System in Machine Tools (1$^{st}$ Report) - Gain Tuning of PI Speed Controller - (공장기계 시스템의 모델링과 동적특성 분석 (제1보) - PI 속도 제어기의 제어이득 설정 -)

  • Park, Yong-Hwan;Moon, Hee-Sung;Choe, Song-Yul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.265-271
    • /
    • 1999
  • In the feed drive systems or the spindle systems of machine tools that consist of many mechanical components, a torsional vibration is often generated because of its elastic elements in torque transmission-Generally, the accuracy of motion control system is strongly influenced by the dynamic behavior of coupled transmission components Especially, a torsional vibration caused by the elasticity of mechanical elements might deteriorate the quick movement of system and lead to shorten the life time of the mechanical transmission elements. So, it is necessary to analyze the electromechanical system mathematically to optimize the dynamic characteristics of the feed m1d spindle system. In this paper, based on the DC motor model, a model of electro-drive system with motor has been developed and an optimal criterion for tuning the gain of speed controller is discussed. The frequency bandwidth of the system and the damping ratio in time domain are optimal design specifications for the gain adjustment speed controller. The gains of PI speed controller are then derived from the bandwidth and damping ratio, and those relationships have been classified.

  • PDF

Development of web based shape inspection system for the forging products having complicated shapes (인터넷을 이용한 정밀단조품의 품질평가 시스템 개발에 관한 연구)

  • Park, K.S.;Kim, B.J.;Jang, J.H.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.211-214
    • /
    • 2006
  • The outer race of the constant velocity(CV) joint is an important load-supporting automotive part, which transmits torque between the transmission and the wheel. The outer race is difficult to forge, because its shape is very complex and the required dimensional tolerances are very stringent. Therefore, the internet based shape inspection system is developed in this study to provide quick and accurate data through the easy control from users. Proposed system uses mechanical displacement sensors to measure the shape of CV joint that has six inner ball grooves, and commercially available Lab-View program is used to process measured data into the dimensional shape. Developed program provides a simple user interface that enables users real-time access of data measured from industrial production lines. Furthermore, it can exchange measured data via the internet between users and forging system operators. A java applet helped the system connection via internet. A data, IP access, is transmitted to the packet by TCP/IP. Our proposed system has many advantages over current measuring systems including fast and efficient data processing by real-time control, and system flexibility.

  • PDF

Development of a screw type super-charger for part load control (부분부하제어를 위한 스크류형 과급기 개발)

  • Bae, Jae-Il;Bae, Sin-Chul
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.353-358
    • /
    • 2001
  • Turbo-charging or Super-charging has been used to boost engine power for Gasoline Engine and Diesel Engine came to the world at the beginning of $20^{th}$ century. So far Turbo-Charger has enjoyed a high reputation in the charging filed for its technical advantages such as no demand of operation power from engine and an excellent charging effect in the event of a static operation at mid- and high engine speed. A mechanically driven Super-Charger, however, is now emerging in order to meet demands of the age of speed such as high engine power for a quick change of the driving mode - high engine torque even at low engine speed. Since Super-Charger needs driving power from engine, it cannot improve its relatively higher fuel consumption against that of Turbo-Charger. This negative point is still an obstacle to the wide use of Super-Charger. Super-Charger using Screw-type compressor which has already had a considerable base in air compressor market will fulfill this purpose of improving fuel consumption by minimizing operation power owing to no charging at idling or partially loading driving. This study aims to develop power control concept to achieve this minimization of operation power.

  • PDF

Optimal Parameter Tuning to Compensate for Radius Errors (반경오차 보정을 위한 최적파라미터 튜닝)

  • 김민석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.629-634
    • /
    • 2000
  • Generally, the accuracy of motion control systems is strongly influenced by both the mechanical characteristics and servo characteristics of feed drive systems. In the fed drive systems of machine tools that consist of mechanical parts and electrical parts, a torsional vibration is often generated because of its elastic elements in torque transmission. Especially, a torsional vibration caused by the elasticity of mechanical elements might deteriorate the quick movement of system and lead to shorten the life time of the mechanical transmission elements. So it is necessary to analyze the electromechanical system mathematically to optimize the dynamic characteristics of the feed drive system. In this paper, based on the simplifies feed drive system model, radius errors due to position gain mismatch and servo response characteristic have been developed and an optimal criterion for tuning the gain of speed controller is discussed. The proportional and integral parameter gain of the feed drive controller are optimal design variables for the gain tuning of PI speed controller. Through the optimization problem formulation, both proportional and integral parameter are optimally tuned so as to compensate the radius errors by using the genetic algorithm. As a result, higher performance on circular profile tests has been achieved than the one with standard parameters.

  • PDF