• Title/Summary/Keyword: Queuing Delay

Search Result 109, Processing Time 0.031 seconds

Channel-Based Scheduling Policy for QoS Guarantees in Wireless Links

  • Kim Jeong Geun;Hong Een-Kee
    • Journal of Internet Computing and Services
    • /
    • v.5 no.6
    • /
    • pp.11-20
    • /
    • 2004
  • Proportional Fair (PF) share policy has been adopted as a downlink scheduling scheme in CDMA2000 l×EV-DO standard. Although It offers optimal performance in aggregate throughput conditioned on equal time share among users, it cannot provide a bandwidth guarantee and a strict delay bound. which is essential requirements of real-time (RT) applications. In this study, we propose a new scheduling policy that provides quality-of-service (QoS) guarantees to a variety of traffic types demanding diverse service requirements. In our policy data traffic is categorized Into three classes, depending on sensitivity of Its performance to delay or throughput. And the primary components of our policy, namely, Proportional Fair (PF), Weighted Fair Queuing (WFQ), and delay-based prioritized scheme are intelligently combined to satisfy QoS requirements of each traffic type. In our policy all the traffic categories run on the PF policy as a basis. However the level of emphasis on each of those ingredient policies is changed in an adaptive manner by taking into account the channel conditions and QoS requirements. Such flexibility of our proposed policy leads to offering QoS guarantees effectively and. at the same time, maximizing the throughput. Simulations are used to verify the performance of the proposed scheduling policy. Experimental results show that our proposal can provide guaranteed throughput and maximum delay bound more efficiently compared to other policies.

  • PDF

Periodic Packet Discard Policy for Frame Based Scheduler (프레임 기반 스케줄러를 위한 주기적 패킷 폐기 기법)

  • Lee, Sung-Hyung;Lee, Hyun-Jin;Cha, Jae-Ryong;Kim, Jae-Hyun;Kum, Dong-Won;Baek, Hae-Hyeon;Shin, Sang-Heon;Jun, Jehyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.2
    • /
    • pp.97-104
    • /
    • 2013
  • This paper introduces waiting time based periodic packet discard policy for frame based scheduler. This policy can be used with conventional packet discard policy or buffer management schemes, such as drop-tail or random early detection. Proposed discard policy discards packets, which are stayed in the buffer longer than threshold, at every period of scheduling. This decision of discard is based on waiting time of packet. In this paper, mathematical analysis is performed with situation of network congestion. Also, the simulation is performed to evaluate the performance of proposed discard policy. In the result, proposed discard policy can limit queuing delay by threshold. Also, if the packet discard is performed before scheduling and threshold is set with smaller value than frame length, it can limit the throughput of traffic.

A New RED Algorithm Adapting Automatically in Various Network Conditions (다양한 네트워크 환경에 자동적으로 적응하는 RED 알고리즘)

  • Kim, Dong-Choon
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.5
    • /
    • pp.461-467
    • /
    • 2014
  • Active queue management (AQM) algorithms run on routers and detect incipient congestion by typically monitoring the instantaneous or average queue size. When the average queue size exceeds a certain threshold, AQM algorithms infer congestion on the link and notify the end systems to back off by proactively dropping some of the packets arriving at a router or marking the packets to reduce transmission rate at the sender. Among the existing AQM algorithms, random early detection (RED) is well known as the representative queue-based management scheme by randomizing packet dropping. To reduce the number of timeouts in TCP and queuing delay, maintain high link utilization, and remove bursty traffic biases, the RED considers an average queue size as a degree of congestions. However, RED do not well in the specified networks conditions due to the fixed parameters($P_{max}$ and $TH_{min}$) of RED. This paper addresses a extended RED to be adapted in various networks conditions. By sensing network state, $P_{max}$ and $TH_{min}$ can be automatically changed to proper value and then RED do well in various networks conditions.

A Weight based GTS Allocation Scheme for Fair Queuing in IEEE 802.15.4 LR-WPAN (IEEE 802.15.4 LR-WPAN 환경에서 공정 큐잉을 위한 가중치 기반 GTS 할당 기법)

  • Lee, Kyoung-Hwa;Lee, Hyeop-Geon;Shin, Yong-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.9
    • /
    • pp.19-28
    • /
    • 2010
  • The GTS(Guaranteed Time Slot) of the IEEE 802.15.4 standard, which is the contention free access mechanism, is used for low-latency applications or applications requiring specific data bandwidth. But it has some problems such as delay of service due to FIFS(First In First Service) scheduling. In this paper, we proposes a weight based GTS allocation scheme for fair queuing in IEEE 802.15.4 LR-WPAN. The proposed scheme uses a weight that formed by how much more weight we give to the recent history than to the older history for a new GTS allocation. This scheme reduces service delay time and also guarantees transmission simultaneously within a limited time. The results of the performance analysis shows that our approach improves the performance as compared to the native explicit allocation mechanism defined in the IEEE 802.15.4 standard.

Modeling Heavy-tailed Behavior of 802.11b Wireless LAN Traffic (무선 랜 802.11b 트래픽의 두꺼운 꼬리분포 모델링)

  • Yamkhin, Dashdorj;Won, You-Jip
    • Journal of Digital Contents Society
    • /
    • v.10 no.2
    • /
    • pp.357-365
    • /
    • 2009
  • To effectively exploit the underlying network bandwidth while maximizing user perceivable QoS, mandatory to make proper estimation on packet loss and queuing delay of the underling network. This issue is further emphasized in wireless network environment where network bandwidth is scarce resource. In this work, we focus our effort on developing performance model for wireless network. We collect packet trace from actually wireless network environment. We find that packet count process and bandwidth process in wireless environment exhibits long range property. We extract key performance parameters of the underlying network traffic. We develop an analytical model for buffer overflow probability and waiting time. We obtain the tail probability of the queueing system using Fractional Brown Motion (FBM). We represent average queuing delay from queue length model. Through our study based upon empirical data, it is found that our performance model well represent the physical characteristics of the IEEE 802.11b network traffic.

  • PDF

Implementation of Class-Based Low Latency Fair Queueing (CBLLFQ) Packet Scheduling Algorithm for HSDPA Core Network

  • Ahmed, Sohail;Asim, Malik Muhammad;Mehmood, Nadeem Qaisar;Ali, Mubashir;Shahzaad, Babar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.473-494
    • /
    • 2020
  • To provide a guaranteed Quality of Service (QoS) to real-time traffic in High-Speed Downlink Packet Access (HSDPA) core network, we proposed an enhanced mechanism. For an enhanced QoS, a Class-Based Low Latency Fair Queueing (CBLLFQ) packet scheduling algorithm is introduced in this work. Packet classification, metering, queuing, and scheduling using differentiated services (DiffServ) environment was the points in focus. To classify different types of real-time voice and multimedia traffic, the QoS provisioning mechanisms use different DiffServ code points (DSCP).The proposed algorithm is based on traffic classes which efficiently require the guarantee of services and specified level of fairness. In CBLLFQ, a mapping criterion and an efficient queuing mechanism for voice, video and other traffic in separate queues are used. It is proved, that the algorithm enhances the throughput and fairness along with a reduction in the delay and packet loss factors for smooth and worst traffic conditions. The results calculated through simulation show that the proposed calculations meet the QoS prerequisites efficiently.

Performance Improvement of IEEE 802.15.4 MAC For WBAN Environments in Medical (의료 WBAN 환경을 위한 IEEE 802.15.4 MAC 성능 개선)

  • Lee, Jung-Jae;Hong, Jae-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.1
    • /
    • pp.103-110
    • /
    • 2015
  • WBAN(Wireless Body Area Network) is a Wireless Sensor Network for supporting various applications around body within 2~3m which consists of medical and non-medical device. MAC in WBAN environment should satisfy requirements such as low power consumption, various transmission rate, QoS, and duty-cycle, efficiently distribute frequency band, be strong at traffic load and save energy. This paper proposes AQ(Adaptive Queuing) MAC superframe structure for efficient energy use, considering the increase of traffic load. The simulation result also show that transmission rate and average MAC delay rate is improved comparing IEEE 802.15.4 MAC with AQ MAC.

A Weighted Fair Queuing Scheduler Guaranteeing Differentiated Packet Loss Rates (차별화된 패킷 손실률을 보장하는 가중치 기반 공정 큐잉 스케줄러)

  • Kim, Tae Joon
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.12
    • /
    • pp.1453-1460
    • /
    • 2014
  • WFQ (Weighted Fair Queuing) provides not only fairness among traffic flows in using bandwidth but also guarantees the Quality of Service (QoS) that individual flow requires, which is why it has been applied to the resource reservation protocol (RSVP)-capable router. The RSVP allocates an enough resource to satisfy both the rate and end-to-end delay requirements of the flow in the condition of no packet loss, and the WFQ scheduler guarantees those QoS requirements with the allocated resource. In practice, however, most QoS-guaranteed services allow a degree of packet loss, especially from 0.1% to 3% for Voice over IP. This paper discovers that the packet loss rate of each traffic flow is determined by only its time-stamp adjustment value, and then enhances the WFQ to provide a differentiated packet loss guarantee under general traffic conditions in terms of both traffic characteristics and QoS requirements. The performance evaluation showed that the proposed WFQ could increase the utilization of bandwidth by 8~11%.

Modeling and Performance Analysis of MAC Protocol for WBAN with Finite Buffer

  • Shu, Minglei;Yuan, Dongfeng;Chen, Changfang;Wang, Yinglong;Zhang, Chongqing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4436-4452
    • /
    • 2015
  • The IEEE 802.15.6 standard is introduced to satisfy all the requirements for monitoring systems operating in, on, or around the human body. In this paper, analytical models are developed for evaluating the performance of the IEEE 802.15.6 CSMA/CA-based medium access control protocol for wireless body area networks (WBAN) under unsaturation condition. We employ a three-dimensional Markov chain to model the backoff procedure, and an M/G/1/K queuing system to describe the packet queues in the buffer. The throughput and delay performances of WBAN operating in the beacon mode are analyzed in heterogeneous network comprised of different user priorities. Simulation results are included to demonstrate the accuracy of the proposed analytical model.

A Stable Random Access Protocol For A Computer Network (안정된 컴퓨터 통신망을 위한 임의 접근 프로토콜)

  • Lee, Sang-Geon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.2
    • /
    • pp.515-522
    • /
    • 1997
  • A neat prefect stable random access protocol for a broadcast channel,the distributed queuing random access protocol(DQRAP)is presented and evaluated.The DQRAP prootcol utilizes minisolts to provide termaty chan-nel feedback and two distributed queues to:9a) resolve contention and (b) to schedute the transmission of messages.Three minislots are sufficient to resolve collisions faster than the tranmission times of all inboled mecages.Three minislots are suffcient to resolve collisions faster than the tranmission times of all inbolved arrivals when ternary minislot feedback is used.Modelingand simulation indicate that the DQRAP protocol, using as few as three minislits,achives a performance level which approaches that of hypothetical perfect cheduling protocol,ie,the M/D/I system,with respect to propagation delay,thus offers the potential of improved performance over current protocols in satellite,metropolitan and packet radio networks.

  • PDF