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Modeling Heavy-tailed Behavior of 802.11b Wireless LAN Traffic

Dashdorj Yamkhin*, Youjip Won**

Abstract

To effectively exploit the underlying network bandwidth while maximizing user perceivable QoS,
mandatory to make proper estimation on packet loss and queuing delay of the underling network.
This issue is further emphasized in wireless network environment where network bandwidth is
scarce resource. In this work, we focus our effort on developing performance model for wireless
network. We collect packet trace from actually wireless network environment. We find that packet
count process and bandwidth process in wireless environment exhibits long range property. We
extract key performance parameters of the underlying network trafficc. We develop an analytical
model for buffer overflow probability and waiting time. We obtain the tail probability of the
queueing system using Fractional Brown Motion (FBM). We represent average queuing delay from
queue length model. Through our study based upon empirical data, it is found that our
performance model well represent the physical characteristics of the IEEE 802.11b network traffic.
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1. Introduction

Over the past several decades network and
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communication technology has
been a significant and growing compo-
nent of Internet traffic. Integrated broadband
networks are expected to support various traf-
fic types such as data, voice, image, and
video. Traffic generated from these services is
substantially different in its statistical charac—
teristics, and networks are required to main-
tain a certain level of throughput during each
session for these services. For example, re-
al-time voice communication over computer

network requires several Kbits/sec of network
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bandwidth and has to be delay sensitive. To
effectively exploit the capacity of underlying
network and to maximize QoS, it is man-—
datory to have proper performance model and
use this model to allocate resource for efficient
service support. The contribution of this work
is twofold. First, we analyze the stochastic
characteristics of wireless network traffic. We
collect full packet trace from up-and-running
IEEE 802.11b network. Discovery of scaling
behavior in the measured teletraffic leads to
model solutions that can approximate the data
characteristics much better than previous
techniques. Self-similar processes have been
used to successfully model data, which exhibits
long-range dependency in a variety of different
scientific fields, including [1], geophysics [2], bi-
ology [3], telecommunication networks [4], and
economics. Second, we develop performance
model for packet traffic of wireless network.
We apply Fractional Brownian Motion to
model the incoming packet process. Our model
accurately models buffer overflow and waiting
time behavior of the underlying traffic.

2. Related Work

Tang and Baker[5] analyzed a 12 week
trace collected from the wireless network.
Their study provides a good qualitative description
of how mobile users take advantage of a
wireless network, although it does not give
characterization of user workloads in the
network. Tang and Baker [5] also characterized
user behavior in a metropolitan—area network,
focusing mainly on user mobility. Other studies
of Queue Analysis and Multiplexing of
Heavy-tailed traffic in Wireless packet
networks have focused more on network
performance, the asymptotic distribution of
traffic

transmission rate for wireless system [6]. Qin et.

loss  probability, specifications, and

Al aggregated the multiple input self-similar

traffic sources at the Access point (AP) and

calculated the H parameter by using three
method Rescaled (R/S), Variance-time plots
and Periodogram-based for estimating of the
self-similar wireless LAN traffic. They used
the OPNET simulator and compared real data
traffic with the simulation data [7]. Chen et.
al. calculated the loss probabilities in a finite
size partitioned buffer system. The input is
modeled as a fractional Brownian motion
(FBM) process included J [8] classes of traffic
with  different
Heuristic expressions of the loss probabilities

packet loss requirements.
for all the J classes are derived, and validated
by computer simulations [8]. Zhifei et. al.
represented in real-time multimedia applications,
the delay is an important performance metric
as well as packet loss probability (PLP).
Based on their statistical characteristics and
with the PLP and the delay considered, a
computationally simple approximate expression
for the equivalent bandwidth of the multimedia
applications, has been proposed for real-time
bandwidth estimation and management [9].
Yunhua et. al. represented the bandwidth
allocation bounds and admission control of a
self-similar traffic input queue system with
FBM process are investigated. The analytic
formulas about resource allocation are obtained
with the overflow probability of queuing
system [10]. Yunhua et. al. analyzed the
self-similar phenomenon in network traffic.
The modeling of self-similar traffic and its
impact to the performance of network queue
system 1is also designed. The character of
long-range dependence in network traffic, the
delay and jitter of queue system can be
influenced greatly, which is different from that
of Markov model in a long time and must
considered in network design [11]. Mayor et.
al. introduced a new traffic model based on a
fractional Brownian motion envelope process.
They show that this characterization can be
used to predict queuing dynamics. They derive
new framework for computing delay bounds in
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ATM networks based on this traffic model
[12].  Whereas our study focuses on small
time scale statistical characteristics, like estimating
the tail probability based on an approximation
using FBM tail probability, the average queuing
buffer waiting time using the Little’'s law, and
buffer length with FBM queueing. In our case,
we calculated the theoretical channel capacity
by using Norros question [13] and Dependency
between variance coefficient and buffer size.
The paper is organized as follows. In Section
2 we discuss related work and Section 3 explain
long range dependent properties and Fractional
Brown Motion. Section 4 shows measurement,
in Section 5 the traffic analysis for FBM with
a section on long range dependent property,
Tail probability analysis and estimates the
buffer overflow probability. In section 6 we
presented the average waiting time and in
section 7 for conclusion.

3. Synopsis: Long Range Depend
ence and Fractional Brownian
Motion

3.1 Long-range Dependence

Long-range dependence is defined in terms
of the behavior of the autocovariance C(7) of
a stationary process as T increases. For many
processes, the autocovariance rapidly decays
with 7 . For the Poisson increment process
with increment L and mean \, the autocovar-
is in [14, 17],
Or)=R(r)=N=X—-). I
short-range dependent process satisfies the

iance for wvalues of 7> L

general, a

condition that its autocovariance decays ex-—

ponentially: C'(k)Na‘k‘ as  |kl——o0,
0<a<l.

The types of data traffic models typically
considered in the literature or in the papers

employ only short-range dependent processes.
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Using the equality Y,z"=-—, lzl<1 we
£=0

11—z’
can observe that Z wC(K) for a short-range
dependent process is finite. In contrast, a
long-range dependent process has a hyperbolically
decaying autocovariance: CK)~ k™7 as
|k[—>co, 0 < <1 where f is the same pa-
rameter defined earlier and is related to the

g

Hurst parameter as H=1— —. In this case,

2
ZKC(K):OO. The variances of the ag-
gregated self-similar processes X ('"), m=>1,
decrease more slowly than the reciprocal of
the non-overlapping batch size m. This prop—
Var [X(m) ] —em ™

when m~—co, ¢ is a constant and 0 < <1

erty is given by in [18]

. If =1 in this case that processes such as

Poisson processes in [18] proved that

g

H= 1*5 [18]. Variance time function become

is [191: Var

XM =0*m 20" where

2H

2 . .
o”=MXat"”, XA and a are incoming rate and

variance [18].

3.2 Fractional Brownian Motion
Fractional Brown motion is a model which
is used for modeling self-similar processes[14].
The model itself was introduced by
Mandelbrot and Van Ness [15]. Let By(t)
be a self-similar process with stationary
increments. We define the increments as:
Y(t)ZBt(t)—BH(t—l) where Y(t) is a
By(t) is called

Fractional Brownian Motion and Y(¢) is

Gaussian process. The set

called Fractional Gaussian Motion. The definition
given by Mandelbrot for Fractional Brownian
Motion is given by [15]:
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where I’ is the Gamma distribution. The
Fractional Brownian Motion is a continuous
time Gaussian process, when Hurst parameter
is bounded between zero and one, 0 < H < 1.
(Fig. 1)
Motion process with H=0.3 and H=0.8

It shows that when value of Fractional

shows the Fractional Brownian

Brownian Motion changes slowly, it becomes
more dependent on Hurst parameter.

F ractio ral B rownian Motion Process withH=0.3, H=0.5
5

value of Bm

u] 200 400 [=1uln} s00 1000
tirm e unit

(Figure 1) Fracional Brown Motion H=0.3
and H=0.8

4. Data Study

4.1 Measurement Setup
(Fig. 2) shows the
and connection used in this study. To cover

network configuration

wider geographical area, it is more cost effective
to use wireless network than to use wired
network technology. Particularly, in a sparsely
populated country like Mongolia, wireless net-
work is preferred communication medium. In a
wireless network there is one six-sector an-
tenna system where each sector antenna ap-—
proximately covers 60° degree angle and ad-
jacent sector antennas slightly overlaps with
each other. 40 wireless clients are connected
to 2 Access Point of the provider. Routing of
all connections, and also the control and
management of throughput (Traffic Shaping,
QoS) are carried out with a router. Each
wireless client has throughput ranging from 64
up to 512 kbps. We use packet sniffer to col-
lect the packet trace[l6]. Sniffer is connected
to the network so as to record traffic going
through Point “1” and simultaneously through
Point “2” in (Fig. 2). Please note that the
point of “1” receiving traffic information
sharing among wireless customers, and with it
the traffic flow of information between cus-—
tomers and Internet. After a point “2” is only
the latest of them. All packages are recorded
down to the file with tcpdump format. More
than 12.7 million packets were collected in this
study. Of these, 70 percent were used to
construct the TCP datagram.

4.2 The Characteristics of Realizations
Packet was collected from March, 18th, 2005
(Wednesday) at 10:00 to March, 18th at 17:00.

<Table >1 Traffic data sets description

Data sets | File description Protocol layer
eth.dat Aggregate traffic, captured at point 1 2(Ethernet)
eth.src Upstream traffic, captured at point 2. 2(Ethernet)
eth.dst Downstream traffic, captured at point 2. 2(Ethernet)
tep.dat TCP traffic, captured at point 2 4(TCP)
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(Figure 2) The Wireless network
configuration

The duration is 7 hours, short description is
given in <table 1>.

Data are presented with two columns in
ASCIl-format: the first column contains time
labels (in sec.), and the second column contains
the size of the Ethernet-frame in bytes, or the
size of a field of data of an IP-packet in case
of a TCP-packet.

5. Characteristics of Traffic

5.1 Buffer overflow Probability Approx
imation Analysis

We analyze the tail probability of a given
queuing system with finite queue. We assume
that incoming traffic follows FBM (Fractional
Brownian Motion). Fractional Brownian motion
is one of the most widely known model for
self-similar process [13]. Let us briefly explain
fractional Brownian motion. FBM process,
A(t), is defined as in Eq. 2.

A(t)=mt+ Vma Z,t),tER Eq. 2
where m and a denotes average and variance
of arrival process. ZH(t) is Gaussian process
with Zero mean and variance of
Var[ZH(t)} = [t*”. H denotes Hurst parameter

and satisfies HE [0.5,1]. Fractional Brownian
Motion traffic is modeled by the three
parameters FBM(m,«, H). Norros et. Al
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(Figure 3) The queue tail approximation
with the queue length L for m=5 and fixed H

established a
length and

relationship between queue

overflow probability especially
when incoming traffic bears long range

dependent property (Eq. 3) [13].

Ln(Pr(Q>1L])=
B 1 C(1—p)(1—H) QHLM*H)
2ma(lfH)2 H

Eq. 3

where the buffer size L, the service rate C
and the traffic parameters m, o and H for
the boundary values [6].

The analysis of a single queue construction
with FBM at the input was presented for the
first time in [13], where it was shown that
the queue length distribution can be approxi—
mated by Weibull distribution. (Fig. 3) shows
the function of the queue tail approximation
with the queue size in log-log scale for fixed
H and m.

The observed plot linearity illustrates the
probability decay in accordance with the
Weibull law. The approximation tail probability

is follows:

P(Q>z)~exp(—y*22"~ 7))  Eq. 4
where r—> 0, p= m/c, and
v= Zma(llf L C(l-p;](l—H) 2His the offered

load. If the observed traffic, that is, the traffic
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(Figure 4) Buffer overflow probability with
different values of H and variance
coefficient

extracted traffic data with 1 sec can be ap-—
proximated H=0.82, m =0.22 Mbps, and

a=1.0%10"(bit/sec)?. Thus, tail probability
can be calculated with Eq. 4. In previous
studies, we analyzed dependency for parameters
of variance and Hurst parameter. In this case,
we calculated the time scale and then find
the maximum values for variance and Hurst
parameter in 1 sec interval which follows:
H_ .. =0.89,

max

a=3.5%10" (bit/sec)’.
different values of H and variance coefficient

My ax = 1Mbps, and

Consequently, the

result in different shapes of Buffer overflow
probability for the same buffer size. These
enables to use FBM to model real-traffic
traces. Hence, an optimal representation of
buffer overflow probability under a certain
criterion is desirable and optimal approximation
is well worth discussing. Let € be the maximum
set containing H parameter and variance
coefficient for FBM of self-similar process of
eth.dat, eth.src, eth.dst, and tcp.dat.

Let x the mean a set containing H parameter
and variance coefficient for FBM of self-sim-
ilar process of eth.dat, eth,src, eth.dst, tcp.dat.
Then, U x is the set containing maximum
value of  Buffer
maxPr{Q(z) > z}.

overflow probability

Construct a

X HM10A M25(2009. 6)

(Figure 5) The channel capacity with
m=2Mb/s and L=1Mb

maxPr{@Q(z) >z} containing all Pr{Q(z) >z}
[13] for data sets, including the eth.dat,
eth.src, eth.dst, and tcp.dat. This approx-
imation estimates tail probability by taking the
maximum value of all tail probabilities for all
parameter sets. This approximation given by
Eq. 4 is shown in( Fig. 4). In this case, the
approximation is larger than the mean values
of H, m (mean input rate), o (mean input
variance coefficient in time interval 1 sec).

5.2 Channel Characteristic Analysis

Assuming the probability Pr (Q >L)=¢
and p:m/c, it is possible to solve [13]
with respect to C and to find that the QoS is
achieved approximately when

1oaem 1

C=mA {71 — ) I P e
Eq. 5

For a practical application of Eq. 5 as the

formula giving the channel size, it is of interest

to examine its sensitivity to « and H.

(Fig. 5) and (Fig 6) show the channel char-
acteristics with different values of o and H
for m=2Mb/s, €= 10 % and for two buffer
sizes L=1Mb and L=10Mb respectively. In this
case, it can be seen that when the buffer is
small, the requirements to the channel are less
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(Figure 6) The channel capacity with
m=2Mb/s and L=10Mb

dependent on H than when the buffer is large.
The observed
well-known fact that it is very difficult to fill

result  illustrates  the
a large buffer by short-range dependent
traffic. The obtained results show that the
queue length distribution with FBM arrival
process has much slower of autocorrelation
decay than in the exponential case in (Fig. 3).
At first we define that an overflow occurs
whenever the arrival rate (m) exceeds the
service rate (C). In this case, the upper bound
of channel capacity as follows [10]:

e=Pr(X(t) >b) < Pr(MZH(1)+rrL>(:)

= Pr(ZH(l) > %)
zé(c#wn) Eq. 6

We find the upper bound channel capacity for
large buffers and see in (Fig. 7) [10]:

C<m+ +v—2amln(e) Eq. 7

All of previous analysis, there are the param-
eters a and H to more dependent on the QoS.

5.3 Average Waiting Time for FBM P
rocess
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(Figure 7) The maximum channel capacity

The FBM process is a Gaussian based
Possible

consists of a waiting time approximation

approximation process. approach
method using the Little’'s law and Norros

queuing theory[13]. Average waiting time is
1
as follows: E(w)= EE(H)’ m = p* C, where

m-input rate, p-utilization, C-service rate,
and E(n)- average length of buffer for FBM.
The queuing buffer for FBM traffic and serv-
ice rate C is defined as follows[13]

(C—m)t+z
t7\/ma
where @(*) is the
distribution. The time t satisfying Eq. 8 is

Pr(Q>a:)2maxt>Ud§( Eq. 8

standard Gaussian

given by:

Hzx
(1—H)(C—m)
Mayor et. all. [12] find t that maximum equa-

t= Ea. 9

tion is busy period for the queuing system:

1

t:(ﬂ*a*[{)l_b’ Eq. 10
C—m

We can derived the maximum queuing length

1
_ ci-m(i-p) [ V=2 H}ﬁ
max H C’(l*/)) a
Eq. 11
Average waiting time of buffer length is as
follows for FBM process:
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(Figure 8) Average waiting time with

different values of H

<1—p>(1—H)(¢T<E>aH)#H

Blw) = pH A1-p)

Eq. 12

(Fig. 8) shows that for big H-parameters a
much higher waiting time is required with the
same utilization and keeping the QoS
requirements. If utilization is more than 0.5 we
can see more dependency on the Hurst pa-
rameter in (Fig. 8). In high channel capacity, H
parameter in waiting time is very clear. It
shows that traffic is long range dependent

process in (Fig. 8).

6. Conclusion

We have analyzed a wireless traffic model
with a finite buffer and a constant loss proba-—
bility and estimated the channel capacity with
dependent from Hurst parameter and variance
in 1 sec time interval. We have derived exact
analytical results which have dependent
parameters of buffer overflow probability and
waiting time. The problem of buffer storage
size, belonging to the general limited length
queuing problem, is important in buffer length,
Hurst parameter. Both the mean information
loss and waiting time play a critical role in
the over a QoS of network traffic, so that a
joint investigation of their effect should be a
power tool for the actual design. The results,

however, seem to be applicable to more general
input distribution FGM (Fractional Gaussian
Motion), where an equation analogous to Eq. 4,
and 8 may hold.

References

[1] Beran, J., "Statistics for Long-Memory Processes,”
Vol. 39(1). 1994: Jeffrey Glosup Technometrics. 105
-106.

[2] Frisch, U., "Turbulence the Legacy of A.N. Kolmogo
rov,” Cambridge, 1995.

[3] Collins, J.J. and C.]J.D. Luca, "Upright, correlated
random walks:a statistical-biomechanics approach
to the human postural control system,” Chaos An
Interdisciplinary Journal of Nonlinear Science 1994.
5(1): p. 57:63.

[4] Willinger, W., M.S. Taqqu, and V. Teverovsky, "Est
imators for long-range dependence: an empirical stu
dy, fractals,” In Fractal Geometry and Analysis, Wo
rld Scientific 1996. 3: p. 785-798.

[5] D.Tang and M.Baker. "Analysis of a Metropolitan—
Area Wireless Network,” in In Proceedings of ACM
MobiCom 00. August 2000.

[6] Teymori, S. and W. Zhuang. "Queue analysis and
Multiplexing of Heavy-tailed Traffic in Wireless Pa
cket Data Networks,” Mobile Networks and Applica
tions, Springer, 2007. Vol. 12, No. 1, p. 31-41.

[71 Qin Yu, T. Y.M,, and F.W. Wang. "Hurst parameter
estimation and characteristics analysis of aggregate
wireless LAN traffic,” Communications, Circuits an
d Systems, 2005. Proceedings. 2005 International Co
nference on, 2005. Vol. 1.

[8] Yu Cheng and W.Z. LeiWang, "Calculation of Loss
Probability in a Finite Size Partitioned Buffer for Qu
antitative Assured Service,” IEEE Transactions on
Communications 2007 55:. 2007. p. 1757 - 1771.

[9] Zhifei, Z. and Q. Zhengding. "A novel approach for
real-time equivalent bandwidth estimation,” Comm
unication Technology Proceedings, 2000. WCC-ICC
T 2000. International Conference on. 2000. Vol. 2

[10] Yunhua;, R., Z. Xuecheng;, and L. Weizhong. "Reso
urce allocation for self-similar queue system,” In Pa
rallel and Distributed Computing, Applications and
Technologies, 2003. PDCATapos;2003. 2003. p. 372-
374



10

[11] Yunhua;, R., X. Zhongyang;, and L. Xu. "Performan
ce analysis of queue system with self-similar traffic
input,” ICommunication Technology Proceedings, 2
003. ICCT 2003. International Conference on. 2003.
Vol. 2.

[12] Mayor, G. and J. Silvester. "Time scale analysis
of an ATM queuing system with long-range depend
ent traffic,” In Proceedings of the INFOCOM '97.
Sixteenth Annual Joint Conference of the IEEE Com
puter and Communications Societies. Driving the inf
ormation Revolution (April 09-11) 1997. INFOCOM.
IEEE Computer Society, Washington, DC, 205. Vol.1

[13] Norros, I, "A storage model with self-similar input,
queuing system,” queuing Systems, 1995. vol:16:
p. 387 39%.

[14] Stallings, W., "High-Speed Networks and Internets:
Performance and Quality of Service,” Second Editio
n ed. 2002, New Jersey: Prentice Hall Upper Saddle
River.

[15] Mandelbrot, B. and J.R. Wallis, "Computer experime
nts with fractional Gaussian noises-Part 1: Average
s and variances,” Water Resources Research, 1969.
50 p. 228-267.

[16] Matthews, J., "Computer Networking: Internet Protoc
ols in Action,” 2005: WILEY Johon Wiley & Sons, Inc.

[17] Dashdorj.Y and Youjip.W, "Modeling and analysis
of Wireless LAN,” Journal of Mongolian University
of Science and Technology, 2007. 1/91 UB-2007: p.
15-25.

[18] K. Park,. and Willinger, W, "Self-Similar Network
Traffic and Performance Evaluation,” 2000, A Wiley
~Interscience Publication.

[19] Willinger, W., M.S. Taqqu, and A. Erramilli, "A bibl
iographical guide to self-similar traffic and perform
ance modeling for modern high speed networks,” In
Theory and Applications. 1996: Oxford University
Press. Vol. 4 p. 339-366.

rz

g 802.11b Ecie SHE2 Wl

H

um]
-

e

g 365

A== 43

1991 : Novosibirsk State Techni
cal University of Novosib
irsk, Russia. Computer S
ystem Engineering <3

1996 : Mongolian University of
Science and Technology,
Mongolia 3 8H A}

1991d ~19973 : Mongolian University of Science a
nd Technology, Computer Science and Man
agement School A& ZHA}

19973 ~2003% : Mongolian University of Science a
nd Technology, Network Administrator

2004 ~& A - gt A FEEAE S 9
AbatA

7ok ¢ Network Traffic, Network Modeling and

Analysis, Programming Language

Jo
™

el
1990 29 : A
sty &
199243 29 : A
o A AL
1997 d 7€ : University of Mineso
& ta =4 (AL
1997d 9971999 2€ : Intel A+

19994 39°RAA): SFeta ANAFHEA T

.,_
X

|24 Al

o o aL

Mo o o

ysta A4k vt

FAEoF ¢ AAA, AFE HEHA, HAeH7t



