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무선 랜 802.11b 트래픽의 두꺼운 꼬리분포 모델링

대시도즈 얌힌*, 원유집**

요 약
사용자가 느끼는 QoS를 최대화하면서 네트워크 대역폭의 특성을 효율적으로 활용하기 위해서는 네트

워크의 패킷 손실과 대기행렬의 지연 시간을 구체적으로 예측이 필요하다. 네트워크의 자원이 충분치

않은 무선 네트워크 환경의 경우 예측은 특히 중요한 문제로 부각된다. 본 연구는 무선 네트워크의 성

능 모델을 개발하는 것을 목표로 하고 있다. 실험을 위해서 실제 운영 중인 무선 네트워크 환경에서 패

킷 흐름 자료를 수집하였다. 무선 환경에서의 패킷 개수 공정과 대역폭 공정은 장기 기억 특성을 갖고

있는 것으로 나타났다. 실험을 통해서 네트워크 트래픽의 주요 성능 변수들을 추출해 냈고, 대기 시간과

버퍼 오버플로우 확률에 대한 분석적 모델을 개발하였다. 프랙탈 브라운 운동 (FBM)을 이용한 대기 행

렬의 꼬리 확률을 얻었고, 대기행렬의 길이 모델을 통해서 평균대기 지연을 표현하였다. 실측 데이터를

활용하여 개발한 성능 모델이 IEEE 802.11b 네트워크 트래픽의 물리적 특성을 잘 표현하고 있음을 알

수가 있다

Modeling Heavy-tailed Behavior of 802.11b Wireless LAN Traffic

Dashdorj Yamkhin*, Youjip Won**

Abstract

To effectively exploit the underlying network bandwidth while maximizing user perceivable QoS,

mandatory to make proper estimation on packet loss and queuing delay of the underling network.

This issue is further emphasized in wireless network environment where network bandwidth is

scarce resource. In this work, we focus our effort on developing performance model for wireless

network. We collect packet trace from actually wireless network environment. We find that packet

count process and bandwidth process in wireless environment exhibits long range property. We

extract key performance parameters of the underlying network traffic. We develop an analytical

model for buffer overflow probability and waiting time. We obtain the tail probability of the

queueing system using Fractional Brown Motion (FBM). We represent average queuing delay from

queue length model. Through our study based upon empirical data, it is found that our

performance model well represent the physical characteristics of the IEEE 802.11b network traffic.

Keywords : Wireless LAN; Self-similar network traffic; Long range dependent; Fractional brown motion

1. Introduction

Over the past several decades network and
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c om m u n ic a t io n te c h n o lo g y h a s

b e e n a s ig n if ic a n t and growing compo-

nent of Internet traffic. Integrated broadband

networks are expected to support various traf-

fic types such as data, voice, image, and

video. Traffic generated from these services is

substantially different in its statistical charac-

teristics, and networks are required to main-

tain a certain level of throughput during each

session for these services. For example, re-

al-time voice communication over computer

network requires several Kbits/sec of network
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bandwidth and has to be delay sensitive. To

effectively exploit the capacity of underlying

network and to maximize QoS, it is man-

datory to have proper performance model and

use this model to allocate resource for efficient

service support. The contribution of this work

is twofold. First, we analyze the stochastic

characteristics of wireless network traffic. We

collect full packet trace from up-and-running

IEEE 802.11b network. Discovery of scaling

behavior in the measured teletraffic leads to

model solutions that can approximate the data

characteristics much better than previous

techniques. Self-similar processes have been

used to successfully model data, which exhibits

long-range dependency in a variety of different

scientific fields, including [1], geophysics [2], bi-

ology [3], telecommunication networks [4], and

economics. Second, we develop performance

model for packet traffic of wireless network.

We apply Fractional Brownian Motion to

model the incoming packet process. Our model

accurately models buffer overflow and waiting

time behavior of the underlying traffic.

2. Related Work

Tang and Baker[5] analyzed a 12 week

trace collected from the wireless network.

Their study provides a good qualitative description

of how mobile users take advantage of a

wireless network, although it does not give

characterization of user workloads in the

network. Tang and Baker [5] also characterized

user behavior in a metropolitan-area network,

focusing mainly on user mobility. Other studies

of Queue Analysis and Multiplexing of

Heavy-tailed traffic in Wireless packet

networks have focused more on network

performance, the asymptotic distribution of

loss probability, traffic specifications, and

transmission rate for wireless system [6]. Qin et.

Al. aggregated the multiple input self-similar

traffic sources at the Access point (AP) and

calculated the H parameter by using three

method Rescaled (R/S), Variance-time plots

and Periodogram-based for estimating of the

self-similar wireless LAN traffic. They used

the OPNET simulator and compared real data

traffic with the simulation data [7]. Chen et.

al. calculated the loss probabilities in a finite

size partitioned buffer system. The input is

modeled as a fractional Brownian motion

(FBM) process included J [8] classes of traffic

with different packet loss requirements.

Heuristic expressions of the loss probabilities

for all the J classes are derived, and validated

by computer simulations [8]. Zhifei et. al.

represented in real-time multimedia applications,

the delay is an important performance metric

as well as packet loss probability (PLP).

Based on their statistical characteristics and

with the PLP and the delay considered, a

computationally simple approximate expression

for the equivalent bandwidth of the multimedia

applications, has been proposed for real-time

bandwidth estimation and management [9].

Yunhua et. al. represented the bandwidth

allocation bounds and admission control of a

self-similar traffic input queue system with

FBM process are investigated. The analytic

formulas about resource allocation are obtained

with the overflow probability of queuing

system [10]. Yunhua et. al. analyzed the

self-similar phenomenon in network traffic.

The modeling of self-similar traffic and its

impact to the performance of network queue

system is also designed. The character of

long-range dependence in network traffic, the

delay and jitter of queue system can be

influenced greatly, which is different from that

of Markov model in a long time and must

considered in network design [11]. Mayor et.

al. introduced a new traffic model based on a

fractional Brownian motion envelope process.

They show that this characterization can be

used to predict queuing dynamics. They derive

new framework for computing delay bounds in
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ATM networks based on this traffic model

[12]. Whereas our study focuses on small

time scale statistical characteristics, like estimating

the tail probability based on an approximation

using FBM tail probability, the average queuing

buffer waiting time using the Little’s law, and

buffer length with FBM queueing. In our case,

we calculated the theoretical channel capacity

by using Norros question [13] and Dependency

between variance coefficient and buffer size.

The paper is organized as follows. In Section

2 we discuss related work and Section 3 explain

long range dependent properties and Fractional

Brown Motion. Section 4 shows measurement,

in Section 5 the traffic analysis for FBM with

a section on long range dependent property,

Tail probability analysis and estimates the

buffer overflow probability. In section 6 we

presented the average waiting time and in

section 7 for conclusion.

3. Synopsis: Long Range Depend

ence and Fractional Brownian

Motion

3.1 Long-range Dependence

Long-range dependence is defined in terms

of the behavior of the autocovariance  of

a stationary process as  increases. For many

processes, the autocovariance rapidly decays

with  . For the Poisson increment process

with increment L and mean  , the autocovar-

iance for values of   is in [14, 17],

       . In general, a

short-range dependent process satisfies the

condition that its autocovariance decays ex-

ponentially: ∼ as →∞ ,

     .

The types of data traffic models typically

considered in the literature or in the papers

employ only short-range dependent processes.

Using the equality 
  

∞

 


,   we

can observe that  for a short-range

dependent process is finite. In contrast, a

long-range dependent process has a hyperbolically

decaying autocovariance: ∼   as

→∞ ,      where  is the same pa-

rameter defined earlier and is related to the

Hurst parameter as    

. In this case,

∞ . The variances of the ag-

gregated self-similar processes   
, ≥  ,

decrease more slowly than the reciprocal of

the non-overlapping batch size m. This prop-

erty is given by in [18] :    →

when →∞ , c is a constant and     

. If    in this case that processes such as

Poisson processes in [18] proved that



[18]. Variance time function become

is [19]:  
  where

   ,  and  are incoming rate and

variance [18].

3.2 Fractional Brownian Motion

Fractional Brown motion is a model which

is used for modeling self-similar processes[14].

The model itself was introduced by

Mandelbrot and Van Ness [15]. Let  

be a self-similar process with stationary

increments. We define the increments as:

       where  is a

Gaussian process. The set   is called

Fractional Brownian Motion and  is

called Fractional Gaussian Motion. The definition

given by Mandelbrot for Fractional Brownian

Motion is given by [15]:
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(Figure 1) Fracional Brown Motion H=0.3

and H=0.8

Data sets File description Protocol layer

eth.dat Aggregate traffic, captured at point 1 2(Ethernet)

eth.src Upstream traffic, captured at point 2. 2(Ethernet)

eth.dst Downstream traffic, captured at point 2. 2(Ethernet)

tcp.dat TCP traffic, captured at point 2 4(TCP)

<Table >1 Traffic data sets description

  
 

 
 

∞

  


 
  










 
  





Eq 1

where  is the Gamma distribution. The

Fractional Brownian Motion is a continuous

time Gaussian process, when Hurst parameter

is bounded between zero and one,      .

(Fig. 1) shows the Fractional Brownian

Motion process with    and    .

It shows that when value of Fractional

Brownian Motion changes slowly, it becomes

more dependent on Hurst parameter.

4. Data Study

4.1 Measurement Setup

(Fig. 2) shows the network configuration

and connection used in this study. To cover

wider geographical area, it is more cost effective

to use wireless network than to use wired

network technology. Particularly, in a sparsely

populated country like Mongolia, wireless net-

work is preferred communication medium. In a

wireless network there is one six-sector an-

tenna system where each sector antenna ap-

proximately covers 600 degree angle and ad-

jacent sector antennas slightly overlaps with

each other. 40 wireless clients are connected

to 2 Access Point of the provider. Routing of

all connections, and also the control and

management of throughput (Traffic Shaping,

QoS) are carried out with a router. Each

wireless client has throughput ranging from 64

up to 512 kbps. We use packet sniffer to col-

lect the packet trace[16]. Sniffer is connected

to the network so as to record traffic going

through Point “1” and simultaneously through

Point “2” in (Fig. 2). Please note that the

point of “1” receiving traffic information

sharing among wireless customers, and with it

the traffic flow of information between cus-

tomers and Internet. After a point “2” is only

the latest of them. All packages are recorded

down to the file with tcpdump format. More

than 12.7 million packets were collected in this

study. Of these, 70 percent were used to

construct the TCP datagram.

4.2 The Characteristics of Realizations

Packet was collected from March, 18th, 2005

(Wednesday) at 10:00 to March, 18th at 17:00.
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(Figure 2) The Wireless network

configuration
(Figure 3) The queue tail approximation

with the queue length L for m=5 and fixed H

The duration is 7 hours, short description is

given in <table 1>.

Data are presented with two columns in

ASCII-format: the first column contains time

labels (in sec.), and the second column contains

the size of the Ethernet-frame in bytes, or the

size of a field of data of an IP-packet in case

of a TCP-packet.

5. Characteristics of Traffic

5.1 Buffer overflow Probability Approx

imation Analysis

We analyze the tail probability of a given

queuing system with finite queue. We assume

that incoming traffic follows FBM (Fractional

Brownian Motion). Fractional Brownian motion

is one of the most widely known model for

self-similar process [13]. Let us briefly explain

fractional Brownian motion. FBM process,

A(t), is defined as in Eq. 2.

     ∈ Eq. 2

where m and a denotes average and variance

of arrival process.   is Gaussian process

with zero mean and variance of

    

. H denotes Hurst parameter

and satisfies ∈   . Fractional Brownian
Motion traffic is modeled by the three

parameters . Norros et. Al.

established a relationship between queue

length and overflow probability especially

when incoming traffic bears long range

dependent property (Eq. 3) [13].

LnPr    



 
 



 

Eq. 3

where the buffer size L, the service rate C

and the traffic parameters m,  and H for

the boundary values [6].

The analysis of a single queue construction

with FBM at the input was presented for the

first time in [13], where it was shown that

the queue length distribution can be approxi-

mated by Weibull distribution. (Fig. 3) shows

the function of the queue tail approximation

with the queue size in log-log scale for fixed

H and m.

The observed plot linearity illustrates the

probability decay in accordance with the

Weibull law. The approximation tail probability

is follows:

  ≈ exp       Eq. 4

where →∞ ,    , and


 

 


is the offered

load. If the observed traffic, that is, the traffic
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(Figure 5) The channel capacity with

m=2Mb/s and L=1Mb

(Figure 4) Buffer overflow probability with

different values of H and variance

coefficient

extracted traffic data with 1 sec can be ap-

proximated    ,   , and

    sec . Thus, tail probability
can be calculated with Eq. 4. In previous

studies, we analyzed dependency for parameters

of variance and Hurst parameter. In this case,

we calculated the time scale and then find

the maximum values for variance and Hurst

parameter in 1 sec interval which follows:

m ax   , max   , and

   sec . Consequently, the

different values of H and variance coefficient

result in different shapes of Buffer overflow

probability for the same buffer size. These

enables to use FBM to model real-traffic

traces. Hence, an optimal representation of

buffer overflow probability under a certain

criterion is desirable and optimal approximation

is well worth discussing. Let  be the maximum

set containing H parameter and variance

coefficient for FBM of self-similar process of

eth.dat, eth.src, eth.dst, and tcp.dat.

Let  the mean a set containing H parameter

and variance coefficient for FBM of self-sim-

ilar process of eth.dat, eth,src, eth.dst, tcp.dat.

Then, ∪ is the set containing maximum

value of Buffer overflow probability

maxPr  . Construct a

maxPr   containing all Pr  
[13] for data sets, including the eth.dat,

eth.src, eth.dst, and tcp.dat. This approx-

imation estimates tail probability by taking the

maximum value of all tail probabilities for all

parameter sets. This approximation given by

Eq. 4 is shown in( Fig. 4). In this case, the

approximation is larger than the mean values

of H, m (mean input rate),  (mean input

variance coefficient in time interval 1 sec).

5.2 Channel Characteristic Analysis

Assuming the probability Pr   
and    , it is possible to solve [13]

with respect to C and to find that the QoS is

achieved approximately when

   
ln 











Eq. 5

For a practical application of Eq. 5 as the

formula giving the channel size, it is of interest

to examine its sensitivity to  and  .

(Fig. 5) and (Fig 6) show the channel char-

acteristics with different values of  and 

for   ,     and for two buffer

sizes L=1Mb and L=10Mb respectively. In this

case, it can be seen that when the buffer is

small, the requirements to the channel are less
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(Figure 6) The channel capacity with

m=2Mb/s and L=10Mb

(Figure 7) The maximum channel capacity

dependent on H than when the buffer is large.

The observed result illustrates the

well-known fact that it is very difficult to fill

a large buffer by short-range dependent

traffic. The obtained results show that the

queue length distribution with FBM arrival

process has much slower of autocorrelation

decay than in the exponential case in (Fig. 3).

At first we define that an overflow occurs

whenever the arrival rate (m) exceeds the

service rate (C). In this case, the upper bound

of channel capacity as follows [10]:

  Pr  ≤Pr  
 Pr  

 


 
 


 

Eq. 6

We find the upper bound channel capacity for

large buffers and see in (Fig. 7) [10]:

≤  ln  Eq. 7

All of previous analysis, there are the param-

eters a and H to more dependent on the QoS.

5.3 Average Waiting Time for FBM P

rocess

The FBM process is a Gaussian based

approximation process. Possible approach

consists of a waiting time approximation

method using the Little’s law and Norros

queuing theory[13]. Average waiting time is

as follows:   

   , where

m-input rate, -utilization, C-service rate,

and E(n)- average length of buffer for FBM.

The queuing buffer for FBM traffic and serv-

ice rate C is defined as follows[13]

Pr ≥max  
  Eq. 8

where  is the standard Gaussian

distribution. The time t satisfying Eq. 8 is

given by:

 


Eq. 9

Mayor et. all. [12] find t that maximum equa-

tion is busy period for the queuing system:

  
ln 


 


Eq. 10

We can derived the maximum queuing length

max 
 





ln








Eq. 11

Average waiting time of buffer length is as

follows for FBM process:
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(Figure 8) Average waiting time with

different values of H

 

 
ln





Eq. 12

(Fig. 8) shows that for big H-parameters a

much higher waiting time is required with the

same utilization and keeping the QoS

requirements. If utilization is more than 0.5 we

can see more dependency on the Hurst pa-

rameter in (Fig. 8). In high channel capacity, H

parameter in waiting time is very clear. It

shows that traffic is long range dependent

process in (Fig. 8).

6. Conclusion

We have analyzed a wireless traffic model

with a finite buffer and a constant loss proba-

bility and estimated the channel capacity with

dependent from Hurst parameter and variance

in 1 sec time interval. We have derived exact

analytical results which have dependent

parameters of buffer overflow probability and

waiting time. The problem of buffer storage

size, belonging to the general limited length

queuing problem, is important in buffer length,

Hurst parameter. Both the mean information

loss and waiting time play a critical role in

the over a QoS of network traffic, so that a

joint investigation of their effect should be a

power tool for the actual design. The results,

however, seem to be applicable to more general

input distribution FGM (Fractional Gaussian

Motion), where an equation analogous to Eq. 4,

and 8 may hold.
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