• Title/Summary/Keyword: Queueing delay time

Search Result 96, Processing Time 0.025 seconds

PERFORMANCE ANALYSIS OF TWO FINITE BUFFERS QUEUEING SYSTEM WITH PRIORITY SCHEDULING DEPENDENT UPON QUEUE LENGTH

  • Choi Doo-Il
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.523-533
    • /
    • 2006
  • We analyze two finite buffers queueing system with priority scheduling dependent upon queue length. Customers are classified into two types ( type-l and type-2 ) according to their characteristics. Here, the customers can be considered as traffics such as voice and data in telecommunication networks. In order to support customers with characteristics of burstiness and time-correlation between interarrival, the arrival of the type-2 customer is assumed to be an Markov- modulated Poisson process(MMPP). The service order of customers in each buffer is determined by the queue length of two buffers. Methods of embedded Markov chain and supplementary variable give us information for queue length of two buffers. Finally, performance measures such as loss and mean delay are derived.

An Analysis of Ship Turnaround Time in the Port of Inchon (선박재항시간에 대한 분석연구 -인천항의 경우-)

  • Baik, In-Hum
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.10 no.1
    • /
    • pp.1-14
    • /
    • 1998
  • Transportation provides an infrastructure vital to economic growth, and it is also an integral part of production. As a port is regarded as the interface between the maritime transport and domestic transport sectors, it certainly play a key role in any economic development. Ship's delay caused by port congestion has recently has recently attracted attended with the analysis of overall operation in port. In order to analyse complicated port operation which contains large number of variable factors, queueing theory is needed to be adopted, which is applicable to a large scale transportation system in chiding ship's delay in Inchon port in relation to ship's delay problem. The overall findings are as follows ; 1. The stucture of queueing model in this port can be represented as a complex of multi-channel single-phase 2. Ship's arrival and service pattern were Poisson Input Erlangian Service. 3. The suitable formula to calculate the mean delay in this port, namely, $W_q={\frac{{\rho}}{{\lambda}(1-{\rho})}}{\frac{e{\small{N}}({\rho}{\cdot}N)}{D_{N-1}({\rho}{\cdot}N)}}$ Where, ${\lambda}$ : mean arrival rate ${\mu}$ : mean servicing rate N : number of servicing channel ${\rho}$ : utilization rate (l/Nm) $e{\small{N}}$ : the Poisson function $D_{(n-1)}$ : a function of the cumulative Poisson function 4. The utility rate is 95.0 percents in general piers, 75.39 percents in container piers, and watiting time 28.43 hours in general piers, 13.67 hours in container piers, and the length of queue is 6.17 ships in general piers, 0.93 ships in container piers, and the ship turnaround time is 107.03 hours in general piers, 51.93 hours in container piers.

  • PDF

Performance Analysis of NTT/BT Protocol (NTT/BT 프로토콜의 성능 분석)

  • 이창훈;백상엽;이동주
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.22 no.2
    • /
    • pp.99-123
    • /
    • 1997
  • Performance analysis of NTT/BT protocol is investigated, which is a GFC (Generic Flow Control) ptotocol in ATM (Asynchronous Transfer Mode ) network and is based on cyclic reset mechanism. THe mean cell delay time is proposed as a performance measure of NTT/BT protocol. The mean cell delay time is defined as the duration from the instant the cell arrives at the transmission buffer until the cell is fully transmitted. The process of cell transmission can be described as a single server queueing modle with two dependent services. By utilizing this model, mean cell delay time is obtained and sensitivity of the factors such as window size and reset period is also analysed.

  • PDF

Design and Performance of Linear Clock Fair Queueing Algorithm (LCFQ ( Linear Clock Fair Queueing ) 알고리즘의 설계와 성능 분석)

  • Kim, Young-Han;Lee, Jae-Yong
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.1
    • /
    • pp.1-8
    • /
    • 1999
  • In order to provide appropriate Quality of Service(QoS) guarantee to each traffic flow in intergrated service networks, an efficient traffic scheduling algorithm as well as resource reservation must be adopted in host and transit routers. In this paper, a new efficient fair queueing algorithm which adopts a linearly increasing virtual time is presented. The proposed algorithm is fair and the maximum and mean delay guaranteed of each flow are less than those of the SCFQ(self clocked fair queueing) algorithm which is one of the most promising traffic scheduling algorithm, while providing low implementation complexity as the SCFQ scheme. And, it has the better isolation provided than SCFQ, which means that each flow is much less influenced by the violating traffic flows provided its allocated bandwidth gurantee. The fairness of the proposed algorithm is proved and simulation results of maximum and mean delay presented.

  • PDF

Robust $H_8$State Feedback Congestion Control of ATM for linear discrete-time systems with Uncertain Time-Variant Delay

  • Kang, Lae-Chung;Kim, Young-Joong;Lim, Myo-Taeg
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1758-1763
    • /
    • 2004
  • This paper focuses on congestion control for ATM network with uncertain time-variant delays. The time-variant delays can be distinguished into two distinct components. The first one is represented by time-variant queueing delays in the intermediate switches that are occurred in the return paths of RM cells. The next one is a forward path delay. It is solved by the VBR model which quantifies the data propagation from the sources to the switch. Robust $H_8$ control is studied for solving congestion problem with norm-bounded time-varying uncertain parameters. The suitable robust $H_8$ controller is obtained from the solution of a convex optimization problem through LMI technique.

  • PDF

DISCRETE-TIME $Geo^X/G/l$ QUEUE WITH PLACE RESERVATION DISCIPLINE

  • Lee Yu-Tae
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.453-460
    • /
    • 2006
  • A discrete-time priority queueing system with place reservation discipline is studied, in which two different types of packets arrive according to batch geometric streams. It is assumed that there is a reserved place in the queue. Whenever a high-priority packet enters the queue, it will seize the reserved place and make a new reservation at the end of the queue. Low-priority arrivals take place at the end of the queue in the usual way. Using the probability generating function method, the joint distribution of system state and the delay distribution for each type are obtained.

Performance Analysis of LAN Interworking Unit for Capacity Dimensioning of Internet Access Links

  • Park, Chul-geun;Han, Dong-hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.4B
    • /
    • pp.692-699
    • /
    • 2000
  • We build and analyze some types of queueing model to discuss capacity dimensioning of access links of a LAN interworking unit connected to the Internet backbone network. We assume that the IWU has a FIFO buffer to transmit IP packets to the Internet through the backbone. In order to analyze the system, we use a Poisson process and an MMPP process as input traffic models of IP packets and we use a general service time distribution as a service time model. But we use both an exponential service time and a deterministic service time in numerical examples for simple and efficient performance comparisons. As performance measures, we obtain the packet loss probability and the mean packet delay. We present some numerical results to show the effect of arrival rate, buffer size and link capacity on packet loss and mean delay.

  • PDF

Performance Analysis of a Statistical Packet Voice/Data Multiplexer (통계적 패킷 음성 / 데이터 다중화기의 성능 해석)

  • 신병철;은종관
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.11 no.3
    • /
    • pp.179-196
    • /
    • 1986
  • In this paper, the peformance of a statistical packet voice/data multiplexer is studied. In ths study we assume that in the packet voice/data multiplexer two separate finite queues are used for voice and data traffics, and that voice traffic gets priority over data. For the performance analysis we divide the output link of the multiplexer into a sequence of time slots. The voice signal is modeled as an (M+1) - state Markov process, M being the packet generation period in slots. As for the data traffic, it is modeled by a simple Poisson process. In our discrete time domain analysis, the queueing behavior of voice traffic is little affected by the data traffic since voice signal has priority over data. Therefore, we first analyze the queueing behavior of voice traffic, and then using the result, we study the queueing behavior of data traffic. For the packet voice multiplexer, both inpur state and voice buffer occupancy are formulated by a two-dimensional Markov chain. For the integrated voice/data multiplexer we use a three-dimensional Markov chain that represents the input voice state and the buffer occupancies of voice and data. With these models, the numerical results for the performance have been obtained by the Gauss-Seidel iteration method. The analytical results have been verified by computer simylation. From the results we have found that there exist tradeoffs among the number of voice users, output link capacity, voic queue size and overflow probability for the voice traffic, and also exist tradeoffs among traffic load, data queue size and oveflow probability for the data traffic. Also, there exists a tradeoff between the performance of voice and data traffics for given inpur traffics and link capacity. In addition, it has been found that the average queueing delay of data traffic is longer than the maximum buffer size, when the gain of time assignment speech interpolation(TASI) is more than two and the number of voice users is small.

  • PDF

A Study on The Optimal Data Link Window Flow Control for ISDN (ISDN을 위한 최적 데이타 링크 흐름 제어에 관한 연구)

  • Kim, Dong-Yon;Shin, Woo-Cheol;Park, Mig-Non;Lee, Sang-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1174-1177
    • /
    • 1987
  • The design of flow control protocols for integrared networks with complete voice traffic on the data link level is investigated. The class of admissible flow control policies analyzed maximized the average data link throughput subject to an average system time delay constraints a finite intervals (O,s). In particular, it is shown that the optimum control law is bang-bang (window flow mechanism). The window size L can be analytically derived from maximum tolerated time delay T, the input arrival C of the queueing system, the duration of the time interval S, the initial number of packets in the queue.

  • PDF

Anti-Jamming and Time Delay Performance Analysis of Future SATURN Upgraded Military Aerial Communication Tactical Systems

  • Yang, Taeho;Lee, Kwangyull;Han, Chulhee;An, Kyeongsoo;Jang, Indong;Ahn, Seungbeom
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.3029-3042
    • /
    • 2022
  • For over half a century, the United States (US) and its coalition military aircrafts have been using Ultra High Frequency (UHF) band analog modulation (AM) radios in ground-to-air communication and short-range air-to-air communications. Evolving from this, since 2007, the US military and the North Atlantic Treaty Organization (NATO) adopted HAVE QUICK to be used by almost all aircrafts, because it had been revealed that intercepting and jamming of former aircraft communication signals was possible, which placed a serious threat to defense systems. The second-generation Anti-jam Tactical UHF Radio for NATO (SATURN) was developed to replace HAVE QUICK systems by 2023. The NATO Standardization Agreement (STANAG) 4372 is a classified document that defines the SATURN technical and operational specifications. In preparation of this future upgrade to SATURN systems, in this paper, the SATURN technical and operational specifications are reviewed, and the network synchronization, frequency hopping, and communication setup parameters that are controlled by the Network (NET) Time, Time Of Day (TOD), Word Of Day (WOD), and Multiple Word of Day (MWOD) are described in addition to SATURN Edition 3 (ED3) and future Edition 4 (ED4) basic features. In addition, an anti-jamming performance analysis (in reference to partial band jamming and pulse jamming) and the time delay queueing model analysis are conducted based on a SATURN transmitter and receiver assumed model.