
ICCAS2004 August 25-27, The Shangri-LaHotel, Bangkok, THAILAND

1. INTRODUCTION

Congestion control is a process by which networks use 
feedback to adjust the influx of data such that the customer’ s 
QoS (quality of service) requirements are met while
simultaneously attempting to maximize the utilization of the 
network’ s resources. To solve the congestion control, explicit 
rate control is used. This mechanism allows the switches to 
explicitly designate the cell transmission rate by modifying the 
explicit rate (ER) value of the RM cell. The delays in ATM 
networks have four components: packet delays, transmission
delays, processing delays, and queueing delays. The first three 
categories are fairly constant, but the fourth one is the major 
source of time variance.

For some representative prior works on this general topic, 
robust congestion control in high speed network is studied [9].
It illustrates models that  include simple delays (i.e. constant 
delay). These models are easy to understand and organize, but 
they are not sufficient to apply to practical systems. There are 
some papers that study the effect of uncertain time-variant
delay in ATM network, but  they use queueing model to apply 
delay and show some simple congestion controller. We can 
distinguish two distinct components of the time-variant delay. 
The one is the return path of RM cells. They experience 
time-variant queueing delays in the intermediate switches.
This mechanism is illustrated by Hold Freshest Sample Model 
(“holds” the same rate until it receives “fresh” information.)[2].
The another is forward path delay. It is solved by VBR model,
which quantifies the propagation of data volume from the 
sources to the switch. In case of multi queueing system, we 
may consider max-min fairness. The introduced system is
capable of modeling time-variant communication delays
between a single congested node and several sources, rate and 
buffer nonlinearities, RM cells loss caused by mismatches
between time-variant RA cells period and the cycle of 
controller. These systems have time-variant delay that we
can’ t know accurate numerical value. Therefore this paper will
apply time-variant delay to robust H8  state feedback control of 
linear discrete-time uncertain dynamical systems in ATM
networks.

This paper studies, via a linear matrix inequality approach, 
the problem of robust H8  state feedback control for discrete
system with time-variant delay of parametric uncertainty in 
ATM network. As a result, the system under consideration is 
subjected to time-varying norm-bounded parameter
uncertainties. This paper includes several parts as follows. 
First, introduction of congestion control of ATM network is 
shown in brevity. Second, the state equation of time-variant

delay model is studied. Third, we address the problem of 
robust H8  state feedback control in which both robust stability 
and a prescribed H8  performance are achieved irrespective of 
the uncertainty. Finally, we demonstrate the result through 
several examples.

2. ATM NETWORK WITH TIME-VARIANT

DELAY MODEL

Fig. 1 ATM Service Model

Fig.1 shows a simple network with a single congested node 
and end to end RM cell routing. Bandwidth for the ABR 
traffic on the congested link is b0. The congested switch uses 
the RM cells on the return path to inform the sources about the 
rate at witch they should transmit. The delay these RM cells 
undergo from the congested node to the source will be
time-variant in nature. 

2.1 Single source model

Fig. 2 illustrates two paths of one single communication 
link. One is the return path RM cells travel from the switch to 
the source. Another is the forward path the user data travels 
from the source through the congested switch. Thus we need 
two different models corresponding to the two different
quantities. Both modes will be formulated in discrete time 
with sampling period T, since this simplifies the analysis of 
the arising system. b(n) denotes the rate computed at the
congested node at time instant n, and r(n) is the rate at which 
the source transmits at time instant n. z(n) is the number of 
cells that arrive at the congested switch between time instant 
n-1 and time instant n.

The generation of RM cells in general does not follow a 
fixed period, thus creating a rate mismatch between the
controller rate and the RM cells rate. This rate mismatch may 
introduce a time-variant delay since an RM cell will not 
always be available at the time instant the controller computes 
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its output.

Fig. 2 Single source network model

The return paths of RM cells experience time-variant
queueing delays in the intermediate switches. We introduce 
HFS (Hold Freshest Sample)[2] interface for explaining the 
return paths delays. This interface holds the most recently 
received sample both at the plant and controller input as long 
as necessary. If an old sample arrives after a newer one was 
received it is simply discarded. At any time instant n, we can 
have one of the following three situations. First case is no 
signal coming at the output of the time-variant delay block. In 
this case we simply hold the previous sample, thus we have:

( ) ( )1r n r n= −                             (1)

Second case is all the signals that arrived at time n are older 
than the freshest sample at time n-1. Also in this situation we 
discard the newly arrived signals and we hold the previous 
sample:

( ) ( )1r n r n= −                             (2)

Final case is at least one more recent sample arrived at time 
instant n and we choose the most recent one:

( ) ( )( )r n b n nτ= −  (3)

where t(n) is the delay encountered by an RM cell on the 
return path. The delay t(n) is satisfying the inequality:

( )0 nτ τ τ≤ ≤ ≤ < ∞                      (4)

where , andτ τ are minimum and maximum delays. Eq. (3) 

is written as:

( ) ( ) ( ) ( ) ( )
min maxmin maxr n n b n n b nτ τα τ α τ= − + + −L   (5)

( ) max

min

1, if
, 1

0, otherwise
j j

j

j n τ

τ

τ
α α

=

⎧ =⎪= =⎨
⎪⎩

∑         (6)

For the queueing delays, the maximum and minimum delays 
are simple to compute. The minimum delay is zero
corresponding to an empty tandem queue, while the maximum 
delay occurs when all the queues from the switch to the source 
are at maximum occupancy.
  The forward path model quantifies the propagation of data 
volume from the sources to the switch at any given time n. We 
assume that there are no packet/cell losses on the

communication channel, and we do not require the FIFO
property. At any time instant n, there is one of the following 
two situations. One is no signal at the output of the
time-variant delay. In this case:

( ) 0z n =                               (7)

Another is at least one signal at the output of the time-variant
delay. In this case all the values that arrived during this time 
period are added, since the communication link cannot lose 
data:

( ) ( ) ( )
max

min

i

i

z n n i b n i
τ

τ
β

=
= − −∑                   (8)

( ) ( ) max

min

1, if
, 1

0, otherwise
i i

i

i n
n

τ

τ

τ
β β

=

⎧ =⎪= =⎨
⎪⎩

∑           (9)

The delays t 1,i(n), t 2,i(n) correspond to the HFS/VBR
models where the index i denotes the source with i =1, …, M.
We assume that the delays are bounded:

( ) ( )1, 1, 2, 2,0 , 0 ,i i i in nτ τ τ τ≤ ≤ ≤ ≤            (10)

  The state-space equation includes the delays generated by a
and ß in Eqs. (6), (9) and date transfer rates are shown as 
follows:

( ) ( ) ( ) ( ) ( )1i i i ix n A n x n B n b n+ = + (11)

( ) ( ) ( ) ( ) ( )i i i iz n C n x n D n b n= +              (12)

where

( ) [ ]
[ ]

[ ] [ ]

2,

2,

0

0

, 0,

1, 0,

1, 0,

i

i
i i i

i i i

i i

w

B n
w R i i

w R i i

w R i i

β τ α

β τ α

β α

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥⎡ ⎤⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤−⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M

M

              (14)

( ) [ ] [ ]0, 0,i i iD n R w i iβ α=                    (16)

xi(n) corresponds to the state of the ith delay line
corresponding to the ith source, including the RM cell path 
from the congested switch to the source and the data cell path 
from the source to the congested switch. We denote with a[j,

i], j = 1, …, 1, iτ , i = 1, …, M, jth time-variant coefficient aj

of the HFS model for the ith return path. ß is similar to a.  The 
weights wi(n) represent the “fair” share of the bandwidth
allocated to source i and can be computed using a max-min
fairness algorithm[3]. And rate saturation Ri is defined for the 
ith source as follows:

( ) ( )( ), 0, 0,satR i i i i i ir R n r r r= − +                (17)

where Ri(n) ∈ [Ri,min, 1]
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2.2 Multi source model

The congested switch model consists of a finite buffer, a 
queue, and a rate control component. The buffer receives 
incoming data from all sources. The data rates are converted to 
data by multiplication with the sampling period T. At each 
time instant n the buffer level ys(n) is shown as follows:

( ) ( ) ( )

( ) ( ) ( )

( ) ( )( ) ( )

( ) ( ) ( )

0

1

0
1

0 0

0

0
0 1 1

1

1

M

s s i

i

M

s i i i

i

M

s i i i

i

M M M

s i i i i

i i i

y n y n zT n b T

y n T C x D b n n b T

y n T C x D b u n b n b T

y n T C x n T D b T D b u

ω

ω

ω

ω

=

=

=

= = =

⎛ ⎞
+ = + + −⎜ ⎟

⎝ ⎠

= + ⎡ + ⎤ + −⎣ ⎦

⎡ ⎤= + + ∆ + + + −⎣ ⎦

⎛ ⎞= + + + − + ∆ +⎜ ⎟
⎝ ⎠

∑

∑

∑

∑ ∑ ∑
      (18)

where ?(n) is the exogenous disturbance, b0 denotes available 
bandwidth and u(n) is the control input. ?b represents the 
queue control component of the bandwidth.

( )0 sb G y y∆ = −                          (19)

where G denotes proper gain, and y0 is queue set point.
  We can express the entire closed-loop system in state space 
form as follows:

( ) ( ) ( ) ( ) ( ) ( ) ( )1x n A n x n B n u n H n nω+ = + +      (20)

( ) ( ) ( ) ( ) ( )y n C n x n D n u n= +                 (21)

( ) ( )sy n Ex n=                            (22)

where
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0 0 0 0M M M

D D C

D D C
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⎢ ⎥
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1 2

TT T T

MD D D D⎡ ⎤= ⎣ ⎦L                    (26) 

[ ]1 0 0 0
T

E = L                      (27)

The state vector x(n) is composed of the queue length, queue 
set point, data transfer rates, and the state of the delay lines:

( ) ( ) ( ) ( )0 0 1 2

TT T T

s M
x n y y b b x n x n x n⎡ ⎤= ∆⎣ ⎦L

(28)

3. ROBUST CONTROLLER DESIGN

In this section, a robust controller will be designed such that 
the closed-loop system (20), (21), (22) with this control law is 
robustly stable and has a robust H8  performance ? for all 
admissible parameter uncertainty.

3.1 H8  control with norm-bounded time-varying uncertain 

parameter.

We consider the equations is including uncertain parameter.

( ) ( ) ( ) ( ) ( ) ( ) ( )1x n A A n x n B B n u n H n nω+ = ⎡ + ∆ ⎤ + ⎡ + ∆ ⎤ +⎣ ⎦ ⎣ ⎦
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( ) ( )sy n Ex n=                            (31)
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where A, B, H, C and D are known real constant matrices of 
appropriate dimensions which describe the “nominal” systems, 
and ?A(n), ?B(n), ?C(n) , ?D(n) represent the time-varying
parameter uncertainty. The parameter uncertainty is assumed 
to be of the following structure:

( ) ( )
( ) ( ) ( )[ ]1

1 2

2

A n B n M
F n N N

C n D n M

⎡ ⎤∆ ∆ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥∆ ∆ ⎣ ⎦⎣ ⎦

        (32)

where E1, E2 and N1, N2 are constant matrices of appropriate 
dimensions defining the structure of the uncertainty. F(n) is 
the model of the time varying parameter uncertainty. F(n)
satisfies the following equation:

( ) ( )T
F n F n I≤                           (33)

In this paper, we are concerned with the problem of robust 
state feedback control for the uncertain time delay system for 
all admissible uncertainties. Our attention is to design a state 
feedback controller:

( ) ( )u n Kx n=                            (34)

such that for a given scalar ?>0, all non-zero ? k∈l2[0, 8 ) and
all parameter uncertainties satisfying Eqs. (32)-(33),

[0, ) [0, )
z wγ∞ ∞<                          (35)

In this situation, the system (29)-(31) with the controller (34) 
is said to have a robust H8  performance (35).

Assume 1.

2

D

E

⎡ ⎤
⎢ ⎥
⎣ ⎦

 is of full column rank.

It means that the H8  control problem for the system is 
‘ non-singular’ . Observe that, if the parameter uncertainty in 
the control matrix disappears, that is E2 = 0, the assumption 
reduces to DTD > 0, which is a standard assumption in the 
non-singular H8  control problem for the nominal system. If 
there exists a matrix P > 0 in Eq. (36) such that for any 
admissible uncertainty ?A(k), the unforced system is said to be 
quadratically stable with an H8 -norm bounded ?.

( ) 12
0

T T T T T
A PA A P H I H PH H PA P E Eγ

−−+ − − + <% % % %   (36)

with

2
0

T
I H PHγ −− >                          (37)

or equivalently, there exists a matrix Q > 0 such that for any 
admissible uncertainty ?A(k)

( ) 12
0

T T T T T
AQA AQE I EQE EQA Q HHγ

−−+ − − + <% % % %   (38)

with

2
0

T
I EQEγ −− >                          (39)

where

( )A A A k= + ∆%                           (40)

3.2 Transformation of Riccati equation.

These equations in Eg. (36) and Eg.(38) are difficult to 
apply to the uncertain parameter systems. Thus these problems
can be reformulated as the scaled H8  analysis and syntheses 
problems of an auxiliary system which is independent of the 
uncertainty in the system. For a parameter e > 0, introduce an 
auxiliary system:

( ) ( ) ( ) ( )1a a a ax n Ax n Bu n H w n+ = + +           (41)

( ) ( ) ( )ay n Cx n Du n= +     (42)

( ) ( )1 2s a a ay n E x n E= +                      (43)

where

1
1aH M Hε γ −⎡ ⎤= ⎣ ⎦                       (44)

[ ]

21

1 2,

0 0 0
a a

NN

E E

E

εε
⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦L

        (45)

Uncertain system of (20)-(22) (setting u(k) = 0) is
quadratically stable with a scaled H8 -norm bound ? > 0, if and 
only if the unforced auxiliary system of (41)-(43) (setting u(k)

= 0) is stable with unitary H8 -norm bound[5]. Furthermore, 
the uncertain system (20)-(22) is quadratically stabilizable 
with an H8 -norm bound ? > 0, if and only if the auxiliary 
system (41)-(43) is stablilzable with unitary H8 -norm bound. 
An appropriate state feedback gain is

( ) ( )1

2 2 2 1

TT T T T

a a a aK E E B PB B PA E E
−

= − + +        (46)

where P > 0 is the stabilizing solution of the following Riccati 
equation:

( ) 12 1 2 1

1 1 0
T T T T

T Ta a a a

a aT T

B PA E E B PA E E
A PA P P E E

H PA H PA

−⎡ ⎤ ⎡ ⎤+ +
− − Ξ + <⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
(47)

with

0TI H PH− >                       (48)

where

( ) 2 2

T T T

a a

T T

E E B PB B PH
P

H PB H PH I

⎡ ⎤+
Ξ = ⎢ ⎥

−⎣ ⎦
       (49)

An algorithm for finding the stabilization solution of (47) is 
represented by following equation [6]. Assume that (A, B) is 
stabilizable and that (A, B, E1a, E2a) is left-invertible and has 
no invariant zeros on the unit circle. Then there exists a matrix 
L = 0 such that 
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2 2 0T T

a aB LB E E+ >                         (50)

( )( )
( )

1

1 2 2 2

2 1 1 1 0

T T T T T

a a a a

T T T

a a a a

A LA L A LB E E B LB E E

B LA E E E E

−
− − + +

+ + <
   (51)

and

( ) ( )1

2 2 2 1

T T T T

a a a aA B B LB E E B LA E E
−

− + +         (52)

is asymptotically stable. The input is 

( ) ( ) ( ) ( )1

2 2 2 1

T T T T

a a a au n B LB E E B LA E E x n
−

= + +     (53)

This Riccati equation (51) is in an inequality. Thus this
equation can be solved easily by using LMI algorithm. It is as 
follows that definition of the LMI algorithm [4]. Given
constant matrices M, L and Q of appropriate dimensions
where M and Q are symmetric, then Q > 0 and M + LTQ-1L < 0 
if and only if

0
T

M L

L Q

⎡ ⎤
<⎢ ⎥

−⎣ ⎦
                           (54)

or equivalently

0
T

Q L

L M

−⎡ ⎤
<⎢ ⎥

⎣ ⎦
                           (55)

Now, we apply (51) to the LMI.

2 20, 0T T

a aL B LB E E≤ + > (56)

1 1 1 2

2 1 2 2

0
T T T T

a a a a

T T T T

a a a a

A LA L E E A LB E E

B LA E E B LB E E

⎡ ⎤− + +
<⎢ ⎥+ +⎣ ⎦

        (57)

Using the solution of (56-57), we can obtain a closed-loop H∞
controller.

4. EXAMPLES

  We consider the examples to illustrate our results. This 
example uses the following parameters for our systems.
Because the practical multi system is too complex to solve, the 
proposed system has only 3 sources.

? Bandwidth available for ABR traffic b0 = 3000 cells/s.
? Maximum rate 2b0 = 6000 cells/s.
? Buffer set point y0 = 5000 cells.
? Controller cycle time T = 10 ms.

? Maximum delay on the return path 1τ = 3T.

? Maximum delay on the forward path 2τ = 2T.

? Queue control gain G = 5.
? Fair share bandwidth w1 = 0.3, w2 = 0.3, w3 = 0.4.
? Minimum saturation Ri,min = 0.5.
? Disturbance ? ∈ (-30 cells, 30 cells)

The system starts at ‘0’ queue size. Each source joins
sequentially at 10ms intervals. The results of the simulation 
are shown in Fig. 3 and Fig. 4.

Fig. 3 Queue length of uncertain systems

Fig. 4 Queue length of robust H8  control system

Fig. 3 shows the queue length in the case of the uncertain
time-delay system with disturbance. Since the prior researches
of [1] is not considered exogenous disturbance, control system 
is not guarantee the robustness as shown in Fig. 3. On the 
contrary, our proposed controller is robustly stabilizing against
an exogenous disturbance as shown in Fig. 4, and it should be 
noted that our proposed controller is able to improve the
performance. Both plots are saturated to queue set point in 
5000 cells. 

5. CONCLUSION

In this paper, we have proposed the robust H8  state
feedback congestion controller for linear discrete-time systems 
with uncertain time-variant delay in ATM network. The LMI
algorithm is used for solving the Riccati inequalities. The
examples show that the proposed controller has an effect on 
congestion control of ATM network. Since its effectiveness, 
the proposed controller can be applied to congestion control in 
other communication networks using packet and feedback. 
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