• Title/Summary/Keyword: Queue Capacity

Search Result 98, Processing Time 0.068 seconds

Comparison of Delay Estimates for Signalized Intersection (신호교차로 지체 산정 비교)

  • Jo, Jun-Han;Jo, Yong-Chan;Kim, Seong-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.1
    • /
    • pp.67-80
    • /
    • 2005
  • In this paper, the primary objective of the research are to review the methods currently avaliable for estimating the delay incurred by vehicles at signalized intersections. The paper compares the delay estimates from a deterministic queueing model, a model based on shock wave theory , the steady-state Webster model, the queue-based models defined in the 1994 and 2001 version of the High way Capacity Manual, in addition to the delays estimated from the TRANSYT-7F macroscopic simulation and NETSIM microscopic simulation. More especially, this paper is to compare the delay estimates obtained using macroscopic and microscopic simulation tools against state-of-the practice analytical models that are derived from deterministic queueing and shock wave analysis theory. The results of the comparisons indicate that all delay models produce relatively similar results for signalized intersections with low traffic demand, but that increasing differences occur as the traffic demand approaches saturation. In particular, when the TRANSYT-7F and NETSIM are compared, it is highly differences as approach for traffic condition to over-saturation. Also, the NETSIM microscopic simulation is the lowest estimates among the various models.

Study and Evaluation of an Incident Detection Algorithm for Urban Freeways (도시고속도로 돌발상황 감지 알고리즘 개발에 관한 연구 및 평가)

  • Seo Jeong-ho;In Sung-man;Kim Young-chan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.3 no.1 s.4
    • /
    • pp.53-65
    • /
    • 2004
  • A series of accidents, which are non-recurrent and non-anticipated, are called incidents. These incidents make standard traffic flows interrupt, which result in the decrease of road capacity and a number of social and economic costs, such as the traffic congestion and air pollution. In order to prevent the hazard of incidents, domestic and foreign traffic management center are likely to opt auto-sense system with algorithms of auto-incident sense. However, it is evaluated that the algorithms have a low function with frequent wrong alarms, even if they accurately ry to speculate the incidents. In the case of bottleneck which has lack of road capacity, compared with other roads, due to inefficient road structured over-capacity of the demand of on-off ramp, the incidents regularly take place. Nonetheless, it can be more difficult to speculate the auto-incidents sense owing to similar incidents, such as the queue of in-out flows of cars and the change of road line. Throughout this research, the function of the model has improved excluding near road line in the module of the incidents which is based on the auto-incidents algorithms during the sense of the congestion of ramp areas.

  • PDF

An Analysis of Effectiveness for Permissive Warrants on the Restrictive Left-Turn Signal Control in Urban Arterial Roads (도시 간선도로에서 제한적 좌회전 신호운영의 적용기준 및 효과분석에 관한 연구)

  • Jeong, In-Taek;Lee, Yeong-In
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.17-28
    • /
    • 2009
  • There are many limitations in dealing with rapidly changing traffic demand in urban cities. Thus recently, traffic operation and management skills are more emphasized rather than the expansion of traffic facilities. In particular, in the interrupted flow formed by signalized intersections, it is quite important to give optimal signal timing to each intersection with consideration of progression. However, as fixed signal times per direction can affect passing capacity in signalized intersections, the present four-signal phase including a left-turn signal has many limitations, including reduction of directional road capacity when traffic demand is increases dramatically during peak hours. Because of this problem, lots of studies about internal metering techniques for oversaturated signal control skills have progressed but these techniques are not used widely due to the absence of detectors for queue sensing in real-time signal control systems. In this research, a new methodology called the "restrictive left-turn signal control", which is already used at the intersection above Samsung subway station, is suggested in order to reduce control delay of urban arterial roads. The restrictive left-turn signal control allows a driver to make a U-turn and then a right turn instead of turning left in that intersection. With this change, the restrictive left-turn signal control can contribute to increased intersection capacity by reducing the number of signal phases and maximizing the through phase time. However, road structure and traffic conditions at the target intersections should be considered before the adoption of the proposed signal control.

Development of A Network loading model for Dynamic traffic Assignment (동적 통행배정모형을 위한 교통류 부하모형의 개발)

  • 임강원
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.3
    • /
    • pp.149-158
    • /
    • 2002
  • For the purpose of preciously describing real time traffic pattern in urban road network, dynamic network loading(DNL) models able to simulate traffic behavior are required. A number of different methods are available, including macroscopic, microscopic dynamic network models, as well as analytical model. Equivalency minimization problem and Variation inequality problem are the analytical models, which include explicit mathematical travel cost function for describing traffic behaviors on the network. While microscopic simulation models move vehicles according to behavioral car-following and cell-transmission. However, DNL models embedding such travel time function have some limitations ; analytical model has lacking of describing traffic characteristics such as relations between flow and speed, between speed and density Microscopic simulation models are the most detailed and realistic, but they are difficult to calibrate and may not be the most practical tools for large-scale networks. To cope with such problems, this paper develops a new DNL model appropriate for dynamic traffic assignment(DTA), The model is combined with vertical queue model representing vehicles as vertical queues at the end of links. In order to compare and to assess the model, we use a contrived example network. From the numerical results, we found that the DNL model presented in the paper were able to describe traffic characteristics with reasonable amount of computing time. The model also showed good relationship between travel time and traffic flow and expressed the feature of backward turn at near capacity.

Green-Split Coordination Strategy in Oversaturated Signal System (과포화교통상태에서의 SPLIT COORDINATION신호제어전략)

  • 이광훈
    • Journal of Korean Society of Transportation
    • /
    • v.11 no.1
    • /
    • pp.87-103
    • /
    • 1993
  • The subject this paper is the signal control strategy under oversaturated conditions. The nature of traffic control for oversaturation is essentially different from the standard control modes. While under non-saturated situation traffic control is needed for the sake of safety and efficiency, the throughput is essential under oversaturated conditions. Therefore berth objective and strategies differ. For an oversaturated stream the cycle time and the signal offset are thought to be of rather secondary importance. For this case the green split may well be the most important control variable to serve the excessive demand. Up to now, however, most efforts have concentrated on the strategy with the concept which lies just on the extension of Webster's. "Green-split Coordination Strategy for Over-Saturated Networks", presents newly contrived three types of strategies named Forward-coordination, Backward-coordination and Network-coordination respectively and describes the algorithms with the evaluations. The forward coordination strategy treats the forward wave of flow between two signals. The aim is to prevent the outbreak of queue due to the accumulation of temporary excess of demand in near-saturation or saturation flow. The backward coordination strategy treats the backward rave of flow between two signals. The goal is to prevent the waste of green time caused by the exit block at the upstream signal. for this purpose a feedback regulation is provided of the upstream green-split so that the inflow-outflow balance is kept zero. The resultant surplus of green time is alloted to other signal stages. Also here the examination is made of the appropriate value of the feedback control parameter. The network coordination strategy is operated to maximize the network throughput in a specific direction applying a bang-bang control at the bottleneck intersection. This is a type of intervenient control for policy reasons. For this strategy the green-split coordinations, particuarly the backward coordination, are essential as the tactical elements. In order to evaluate the preposed strategies those are compared with the latest existing strategy called saturation-degree-ratio control by the simulation experiments in an assumed 4$\times$4 grid network. The results are satisfactory showing a 10-15% reduction in delays and a 15% increase in network capacity.

  • PDF

Performance Comparison of Signalized Intersections Analysis Tools in Estimating Control Delays (신호교차로 분석도구별 제어지체 산출 성능 비교 연구)

  • Yun, Ilsoo;Oh, Cheol;Ahn, Hyunkyung;Kim, Kyunghyun;Han, Eum;Kang, Nam Won;Yoon, Jung Eun
    • International Journal of Highway Engineering
    • /
    • v.16 no.5
    • /
    • pp.109-119
    • /
    • 2014
  • PURPOSES : The control delay in seconds per vehicle is the most important traffic operational index to evaluate the level of service of signalized intersections. Thus, it is very critical to calculate accurate control delay because it is used as a basic quantitative evidence for decision makings regarding to investments on traffic facilities. The control delay consists of time-in-queue delay, acceleration delay, and deceleration delay so that it is technically difficult to directly measure it from fields. Thus, diverse analysis tools, including CORSIM, SYNCHRO, T7F, VISTRO, etc. have been utilized so far. However, each analysis tool may use a unique methodology in calculating control delays. Therefore, the estimated values of control delays may be different by the selection of an analysis tool, which has provided difficulties to traffic engineers in making solid judgments. METHODS : This study was initiated to verify the feasibility of diverse analysis tools, including HCM methodology, CORSIM, SYNCHRO, T7F, VISTRO, in calculating control delays by comparing estimated control delays with that measured from a field. RESULTS : As a result, the selected tools produced quite different values of control delay. In addition, the control delay value estimated using a calibrated CORSIM model was closest to that measured from the field. CONCLUSIONS : First, through the in-depth experiment, it was explicitly verified that the estimated values of control delay may depend on the selection of an analysis tool. Second, among the diverse tools, the value of control delay estimated using the calibrated microscopic traffic simulation model was most close to that measured from the field. Conclusively, analysts should take into account the variability of control delay values according to the selection of a tool in the case of signalized intersection analysis.

A Traffic Assignment With Intersection Delay for Large Scale Urban Network (대규모 도시부 교통망에서의 이동류별 회전 지체를 고려한 통행배정연구)

  • Kang, Jin Dong;Woo, Wang Hee;Kim, Tae Gyun;Hong, Young Suk;Cho, Joong Rae
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.4
    • /
    • pp.3-17
    • /
    • 2013
  • The purpose of this study is to develop a traffic assignment model where the variable of signal intersection delay is taken into account in assigning traffic in large-scale network settings. Indeed, despite the fact that the majority of the increase in travel time or cost involving congested urban network or interrupted flow are accounted for by stop delays or congested delays at signal intersections, the existing traffic assignment models did not reflect this. The traffic assignment model considering intersection delays presented in this study was built based on the existing traffic assignment models, which were added to by the analysis technique for the computation of intersection delay provided in Korea Highway Capacity Manual. We can conclude that a multiple variety of simulation tests prove that this model can be applied to real network settings. Accordingly, this model shows the possibility of utilizing a model considering intersection delay for traffic policy decisions through analysis of effects of changes in traffic facilities on large urban areas.

An Improved Genetic Algorithm for Integrated Planning and Scheduling Algorithm Considering Tool Flexibility and Tool Constraints (공구유연성과 공구관련제약을 고려한 통합공정일정계획을 위한 유전알고리즘)

  • Kim, Young-Nam;Ha, Chunghun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.2
    • /
    • pp.111-120
    • /
    • 2017
  • This paper proposes an improved standard genetic algorithm (GA) of making a near optimal schedule for integrated process planning and scheduling problem (IPPS) considering tool flexibility and tool related constraints. Process planning involves the selection of operations and the allocation of resources. Scheduling, meanwhile, determines the sequence order in which operations are executed on each machine. Due to the high degree of complexity, traditionally, a sequential approach has been preferred, which determines process planning firstly and then performs scheduling independently based on the results. The two sub-problems, however, are complicatedly interrelated to each other, so the IPPS tend to solve the two problems simultaneously. Although many studies for IPPS have been conducted in the past, tool flexibility and capacity constraints are rarely considered. Various meta-heuristics, especially GA, have been applied for IPPS, but the performance is yet satisfactory. To improve solution quality against computation time in GA, we adopted three methods. First, we used a random circular queue during generation of an initial population. It can provide sufficient diversity of individuals at the beginning of GA. Second, we adopted an inferior selection to choose the parents for the crossover and mutation operations. It helps to maintain exploitation capability throughout the evolution process. Third, we employed a modification of the hybrid scheduling algorithm to decode the chromosome of the individual into a schedule, which can generate an active and non-delay schedule. The experimental results show that our proposed algorithm is superior to the current best evolutionary algorithms at most benchmark problems.

Flow Control Algorithm for ABR Service in VS/VD Switch (VS/VD스위치의 ABR 서비스 향상을 위한 흐름 제어 알고리즘)

  • 정광일;온종렬;전병실
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.65-70
    • /
    • 1999
  • In ATM network there exist several traffics according to QoS, such as CBR, rt-VBR, nrt-VBR, UBR, and ABR. Many studies have done at the traffic management of ABR which uses the unused network bandwidth. Many flow control mechanisms have proposed to use efficiently the unused bandwidth. In TMWG(Traffic Management Working Group) of ATM Forum, there exist rate-based, credit-based, and mixture of them to manage flow control of ABR traffic. Among these, rate-based mechanisms adopted as standard because it is flexible and also makes it possible to implement ATM switch with low price and high capacity. In this paper, we study the switch that uses EFCI, ER and VS/VD(Virtual Source/Virtual Destination) with rate-based mechanism. Instead of using queue threshold, we propose a new algorithm which uses bandwidth threshold of input stage of switch, and manages efficiently ABR traffic with EPRCA algorithm.

  • PDF

On the Analysis of Transportation Process of Pusan Port (시뮬레이션에 의한 부산항만 운송과정의 분석에 관하여)

  • 박계각
    • Journal of the Korean Institute of Navigation
    • /
    • v.10 no.1
    • /
    • pp.101-127
    • /
    • 1986
  • Transportation provides an infrastructure vital to economic growth, and it is an integral part of production . As a port is the interface between the maritime transport and domestic transport sectors, it certainly plays a key role in any economic development. Therefore, it is doubtless that inadequacy of a nation's port will depress the level of throughput, to the level where it fails to meet the target set by the national economic planning schemes. Korea is surrounded by the seas and the economic structure of Korea consists of processing trades, so that it cannot be overstated that substantial economy in maritime transport coasts can be achieved through the improvement of the port transport system. This paper treats the transportation process in Pusan Port by Queueing Simulation method, and the reasonable size of Pusan Port is suggested from the point of view of efficiency maximization. The results of the analysis are summarized as follows; 1) the utility rate is 47.91 percents in general piers, 85-52 percents in container piers, and waiting time 5.2hrs, in general piers, 0.8 hrs, in container piers, and the probability of maximum queue length 12 ships in general piers, 2 ships in container piers, and the probability of waiting is 44 percents in general piers, 8 percents in container pier. 2) in general piers, the improvement of app. 30 percents in port capacity is desirable for operating effectively concerning the current arrival rate. By introducing the traffic control ion container piers, there is no apparent necessity of port investment, but I is expected to reduce invisible congestion occurred along the waiting line. 3) On Pusan Port, the optimal utility rate and the optimal arrival rate for reducing waiting time are 3.5 to 4.0(hrs./ship) in general piers, 5.1 to 6.0(hrs./ship) in container piers.

  • PDF