맵리듀스는 빅데이터 분석 및 처리에 널리 사용되는 프로그래밍 모델이다. 빅데이터 분석을 위해 흔히 사용되는 질의 중 하나는 집계 질의(aggregate query)이다. 본 논문에서는 여러 사용자가 동시에 여러 집계 질의를 계속해서 요청하는 경우, 맵리듀스를 사용하여 이들 질의를 효율적으로 처리하는 방법을 제안한다. 제안 방법은 각 집계 질의를 개별적으로 처리하지 않고, 여러 집계 질의를 묶어 하나의 최적화된 맵리듀스 잡(job)으로 만들어 일괄 처리한다. 그 결과로 제안 방법은 단순 방법에 비해 시간당 처리하는 질의 수를 크게 증가시킨다. 성능 평가를 통해, 제안 방법은 단순 방법에 비해 질의 처리 속도를 크게 향상시킴을 보인다.
Recently, k-farthest neighbor (kFN) queries have not as much attention as k-nearest neighbor (kNN) queries. Therefore, this study considers moving k-farthest neighbor (MkFN) queries for spatial network databases. Given a positive integer k, a moving query point q, and a set of data points P, MkFN queries can constantly retrieve k data points that are farthest from the query point q. The challenge with processing MkFN queries in spatial networks is to avoid unnecessary or superfluous distance calculations between the query and associated data points. This study proposes a batch processing algorithm, called MOFA, to enable efficient processing of MkFN queries in spatial networks. MOFA aims to avoid dispensable distance computations based on the clustering of both query and data points. Moreover, a time complexity analysis is presented to clarify the effect of the clustering method on the query processing time. Extensive experiments using real-world roadmaps demonstrated the efficiency and scalability of the MOFA when compared with a conventional solution.
Researches for NN(nearest neighbor) query which is often used in LBS system, have been worked. However, Conventional NN query processing techniques are usually meaningless in moving object management system for LBS since their results may be invalidated as soon as the query and data objects move. To solve these problems, in this paper we propose a new nearest neighbor query processing technique, called CTNN, which is possible to meet continuous trajectory nearest neighbor query processing. The proposed technique consists of Approximate CTNN technique which has quick response time, and Exact CTNN technique which makes it possible to search accurately nearest neighbor objects. Experimental results using GSTD datasets showed that the Exact CTNN technique has high accuracy, but has a little low performance for response time. They also showed that the Approximate CTNN technique has low accuracy comparing with the Exact CTNN, but has high response time.
Many continuous queries are important to be process efficiently in a data stream environment. It is applied a query index technique that takes linear performance irrespective of the number and width of intervals for processing many continuous queries. Previous researches are not able to support the dynamic insertion and deletion to arrange intervals for constructing an index previously. It shows that the insertion and search performance is slowed by the number and width of interval inserted. Many intervals have to be inserted and searched linearly in a data stream environment. Therefore, we propose Hashed Multiple Lists in order to process continuous queries linearly. Proposed technique shows fast linear search performance. It can be utilized the systems applying a sensor network, and preprocessing technique of spatiotemporal data mining.
Researches for NN(nearest neighbor) query which is often used in LBS system, have been worked. However. Conventional NN query processing techniques are usually meaningless in moving object management system for LBS since their results may be invalidated as soon as the query and data objects move. To solve these problems, in this paper we propose a new nearest neighbor query processing technique, called CTNN, which is possible to meet continuous trajectory nearest neighbor query processing. The proposed technique consists of Approximate CTNN technique which has quick response time, and Exact CTNN technique which makes it possible to search accurately nearest neighbor objects. Experimental results using GSTD datasets shows that the Exact CTNN technique has high accuracy, but has a little low performance for response time. They also shows that the Approximate CTNN technique has low accuracy comparing with the Exact CTNN, but has high response time.
다중 공간 질의는 동시에 2개 이상 수행되는 영역 질의로 정의되며 인터넷 기반 지도 보기 응용의 주요 연산이 되므로, 질의 처리 속도의 개선을 위해서 병렬로 처리되어야 하고 질의 처리 비용 중 큰 비중을 차지하는 디스크 입출력 시간을 최대한 줄일 필요가 있다. 그런데 다중 CPU/다중 디스크 구조상에서 디클러스터링을 수행하더라고, 다중 공간 질의를 처리하는 도중 질의 간 임의 탐색이 발생하여 디스크 입출력 시간이 증가하는 문제점이 있다. 이 논문에서는 디클러스터된 공간 데이터베이스에서 다중 공간 질의를 처리할 때 발생하는 문제점인 질의 간 임의 탐색을 분석하고, 해결 방안으로 질의 스케줄링 기법을 제시하였다. 질의 스케줄링 기법은 질의 간 관련성을 이용해서 질의 우선 순위를 조정해서 질의 간 임의 탐색을 해결하는 방법으로써, 질의간의 공간 및 시간 관련성 부여를 위해 질의 간 위치 관련성과 질의 대기 시간을 이용하였다. 실험 결과, 질의 스케줄링을 수행하면 디스크 캐쉬의 적중률이 최대 34% 향상되어 디스크 입출력 비용을 최대 6%까지 줄일 수 있어 다중 공간 질의 처리 시의 성능을 개선할 수 있는 것으로 나타났다.
전통적인 데이터베이스와 달리, XML 스트림에 대한 질의는 실시간 처리와 메모리 사용량에 제한이 있다. 이 논문에서는 XML 조각들 사이의 구조적인 관계를 빠르게 확인할 수 있는 강력한 레이블링 기법을 제안한다. 제안된 레이블링 기법은 많은 중복된 작업과 처리해야 하는 조각들의 수를 최소화하여 효율적인 질의 처리를 제공한다. 실험 결과, 제안된 레이블링 기법은 효율적으로 질의를 처리하고 메모리 사용량을 최소화 할 수 있다.
본 논문은 데이타스트림 환경에서 연속질의를 효율적으로 처리하는 방법을 다룬다. 먼저, 기존의 질의 처리 방법을 데이타 엘리먼트와 질의 중에서 어느 것을 먼저 선택하고 수행을 시작하느냐에 따라서, 서로 이원적인 두 가지 방법인 데이타-이니셔티브(data-initiative)와 질의-이니셔티브(query-initiative)로 분류한다. 이러한 분류는 기존의 질의 처리 연구에서 데이타와 질의를 서로 다르게(asymmetrically) 취급하였다는 것에 기인한다. 기존의 연속질의 처리에서는 이원적인 질의 처리 방법 중에서 데이타-이니셔티브 방법만이 사용되었기 때문에, 질의-이니셔티브 방법에서 얻을 수 있는 성능 상의 이점이 간과되었다. 이러한 문제를 해결하기 위해, 데이타와 질의를 동등하게(symmetrically) 볼 수 있다는 점에 착안한다. 본 논문에서는 데이타와 질의의 이원성 모델(Duality Model of Data and Queries)을 제안하고 이 모델에 기반하여 연속질의 처리 문제를 다차원 공간에서의 공간조인 문제로 변환하는 새로운 관점을 제시한다. 그리고, 공간조인 기반 연속질의 처리 알고리즘인 Spatial Join CQ를 제안한다. Spatial Join CQ는 다차원 공간상에 영역으로 표현된 데이타 엘리먼트들의 집합과 질의들의 집합으로부터 서로 겹치는 쌍을 찾음으로써 연속질의를 처리한다. 제안하는 알고리즘은 대칭적인(symmetric) 연산인 공간조인으로 겹치는 영역들을 찾아냄으로써 서로 이원적인 두 가지 질의 처리 방법의 효과를 동시에 얻는다. 성능 평가 결과, 제시하는 알고리즘은 기존의 방법에 비해서 단순 선택 연속질의는 최대 36배, 슬라이딩 윈도우 조인 연속질의는 최대 7배의 성능 향상을 보였다.
유비쿼터스 컴퓨팅의 실현을 위해서는 이동 디바이스 등 클라이언트의 제약된 자원을 효율적으로 사용하는 기법이 요구된다. 메모리 용량이 크지 않은 이동 디바이스의 경우, 대용량 XML 데이터에 대한 질의 처리를 수행하기 위해서는 XML 스트림 질의 처리 기술의 활용이 필수적이다. 최근에 서버에서 XML 문서를 XML 조각(XML fragment)으로 분할하여 스트리밍하고 클라이언트에서 이 조각 스트림을 받아 질의를 처리하는 기법들이 제안되었다. XML 조각 스트림 질의 처리에 있어 XML 문서가 분할되는 방법에 따라 자원 사용(질의 처리 시간 및 메모리 사용량) 면에서 큰 차이가 날 수 있기 때문에 효율적인 XML 문서 분할 방법이 요구된다. 본 논문에서는 클라이언트의 질의 처리 시 자원 사용 효율을 높이기 위한 XML 문서 분할 기법을 제시한다. 이를 위하여 먼저 XML 조각 스트림 질의 처리의 비용 모델을 제시하고, 자원 효율적인 XML 문서 분할 알고리즘을 제시한다. 구현 및 성능 평가 결과 본 논문에서 제시한 기법이 기존 기법들에 비해 질의 처리 시간 및 메모리 사용량 양면 모두에서 우수한 것으로 나타났다. 본 논문의 기여는 XML 조각 스트림 질의 처리 기술의 실용화 가능성을 기존 기술에 비해 한 층더 높였다는 데 있다.
In this letter, we present an event stream processing system that can evaluate a pattern query for a data sequence with predicates. We propose a pattern query language and develop a pattern query processing system. In our system, we propose novel techniques for run-time aggregation and negation processing and apply our system to stream data generated from vehicles to monitor unusual driving patterns.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.