• 제목/요약/키워드: Query answering

검색결과 55건 처리시간 0.02초

근사질의 응답기능을 이용한 협동적 사례기반추론 (Cooperative Case-based Reasoning Using Approximate Query Answering)

  • 김진백
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제8권1호
    • /
    • pp.27-44
    • /
    • 1999
  • Case-Based Reasoning(CBR) offers a new approach for developing knowledge based systems. CBR has several research issues which can be divided into two categories : (1) static issues and (2) dynamic issues. The static issues are related to case representation scheme and case data model, that is, focus on casebase which is a repository of cases. The dynamic issues, on the other hand, are related to case retrieval procedure and problem solving process, i.e. case adaptation phase. This research is forcused on retrieval procedure Traditional query processing accepts precisely specified queries and only provides exact answers, thus requiring users to fully understand the problem domain and the casebase schema, but returning limited or even null information if the exact answer is not available. To remedy such a restriction, extending the classical notion of query answering to approximate query answering(AQA) has been explored. AQA can be achieved by neighborhood query answering or associative query answering. In this paper, neighborhood query answering technique is used for AQA. To reinforce the CBR process, a new retrieval procedure(cooperative CBR) using neighborhood query answering is proposed. An neighborhood query answering relaxes a query scope to enlarge the search range, or relaxes an answer scope to include additional information. Computer Aided Process Planning(CAPP) is selected as cooperative CBR application domain for test. CAPP is an essential key for achieving CIM. It is the bridge between CAD and CAM and translates the design information into manufacturing instructions. As a result of the test, it is approved that the problem solving ability of cooperative CBR is improved by relaxation technique.

  • PDF

지식 추상화 계층을 이용한 근사해 생성 (Providing Approximate Answers Using a Knowledge Abstraction Hierarchy)

  • 허순영;문개현
    • Asia pacific journal of information systems
    • /
    • 제8권1호
    • /
    • pp.43-64
    • /
    • 1998
  • Cooperative query answering is a research effort to develop a fault-tolerant and intelligent database system using the semantic knowledge base constructed from the underlying database. Such knowledge base has two aspects of usage. One is supporting the cooperative query answering process for providing both an exact answer and neighborhood information relevant to a query. The other is supporting ongoing maintenance of the knowledge base for accommodating the changes in the knowledge content and database usage purpose. Existing studies have mostly focused on the cooperative query answering process but paid little attention to the dynamic knowledge base maintenance. This paper proposes a multi-level knowledge representation framework called Knowledge Abstraction Hierarchy(KAH) that can not only support cooperative query answering but also permit dynamic knowledge maintenance, On the basis of the KAH, a knowledge abstraction database is constructed on the relational data model and accommodates diverse knowledge maintenance needs and flexibly facilitates cooperative query answering. In terms of the knowledge maintenance, database operations are discussed for the cases where either the internal contents for a given KAH change or the structures of the KAH itself change. In terms of cooperative query answering, four types of vague queries are discussed, including approximate selection, approximate join, conceptual selection, and conceptual join. A prototype system has been implemented at KAIST and is being tested with a personnel database system to demonstrate the usefulness and practicality of the knowledge abstraction database in ordinary database application systems.

  • PDF

질의 완화를 이용한 지능적인 질의 응답 시스템 (Intelligent Query Answering System using Query Relaxation)

  • 황혜정;김교정;윤용익;윤석환
    • 한국정보처리학회논문지
    • /
    • 제7권1호
    • /
    • pp.88-98
    • /
    • 2000
  • 협력적 질의 응답은 질의와 데이터에 관한 지식을 이용해서 초기의 질의에 적절한 인접한 정보나 연관된 정보를 제공한다. 본 논문에서는 제시된 질의에 대한 정확한 검색 결과를 보여주지 못하는 경우에 협력적 질의 응답을 지원하기 위하여 지능적인 질의 응답 시스템을 제안한다. 본 논문에서 제안한 지능적인 질의 응답 시스템은 하이브리드 지식베이스(Hybrid Knowledge Base)를 이용하여 질의 완화 과정을 수행한다. 질의 완화에 사용되는 하이브리드 지식베이스는 구조적인 접근을 위하여 시멘틱 리스트와 규칙 기반의 지식베이스로 구성된다. 또한, 본 논문은 하이브리드 지식베이스를 기반으로 초기의 질의어를 이용하여 질의 재형성을 하기 위하여 질의 완화 알고리즘을 제안한다.

  • PDF

다국어 질의응답을 위한 한국어 해석 시스템 설계 및 구현 (Design and Implementation of a Korean Analysis System for Multi-lingual Query Answering)

  • 강원석;황도삼
    • 컴퓨터교육학회논문지
    • /
    • 제7권4호
    • /
    • pp.43-50
    • /
    • 2004
  • 다국어 질의 응답 시스템은 여러 언어의 질의에 대한 응답을 하는 시스템이다. LASSO 시스템은 다국어 질의응답 시스템 중의 하나이다. 본 논문은 LASSO 시스템을 위한 한국어 해석 시스템의 설계 및 구현에 관한 것이다. 질의 응답을 위한 한국어 해석 시스템은 한국어 질의를 처리할 수 있는 대화체 처리 기술이 필요하다. 그리고 다양한 분야의 질의에 대한 응답을 할 수 있는 범용의 시스템이어야 한다. 본 논문의 한국어 해석 시스템은 이와 같은 사항을 만족하기 위하여 심도 깊은 대화체 처리 기술보다 실용성이 높은 휴리스틱 규칙을 활용하였다. 이 시스템은 다국어 질의 응답 시스템의 한국어 인터페이스 역할을 하는 것으로 질의 응답 시스템의 목적에 맞게 설계, 구현되었다. 본 해석 시스템에 적용된 기술은 정보검색 분야와 한국어 해석 분야에 응용할 수 있다.

  • PDF

지식 추상화 계층의 구축과 관리 (Management of Knowledge Abstraction Hierarchy)

  • 허순영;문개현
    • 한국경영과학회지
    • /
    • 제23권2호
    • /
    • pp.131-156
    • /
    • 1998
  • Cooperative query answering is a research effort to develop a fault-tolerant and intelligent database system using the semantic knowledge base constructed from the underlying database. Such knowledge base has two aspects of usage. One is supporting the cooperative query answering Process for providing both an exact answer and neighborhood information relevant to a query. The other is supporting ongoing maintenance of the knowledge base for accommodating the changes in the knowledge content and database usage purpose. Existing studies have mostly focused on the cooperative query answering process but paid little attention on the dynamic knowledge base maintenance. This paper proposes a multi-level knowledge representation framework called Knowledge Abstraction Hierarchy (KAH) that can not only support cooperative query answering but also permit dynamic knowledge maintenance. The KAH consists of two types of knowledge abstraction hierarchies. The value abstraction hierarchy is constructed by abstract values that are hierarchically derived from specific data values in the underlying database on the basis of generalization and specialization relationships. The domain abstraction hierarchy is built on the various domains of the data values and incorporates the classification relationship between super-domains and sub-domains. On the basis of the KAH, a knowledge abstraction database is constructed on the relational data model and accommodates diverse knowledge maintenance needs and flexibly facilitates cooperative query answering. In terms of the knowledge maintenance, database operations are discussed for the cases where either the internal contents for a given KAH change or the structures of the KAH itself change. In terms of cooperative query answering, database operations are discussed for both the generalization and specialization Processes, and the conceptual query handling. A prototype system has been implemented at KAIST that demonstrates the usefulness of KAH in ordinary database application systems.

  • PDF

의미 정보와 실체뷰를 활용한 효율적 질의 재구성 기법 (An Efficient Query Rewriting Technique Utilizing Semantic Information and Materialized Views)

  • 장재영
    • 정보처리학회논문지D
    • /
    • 제10D권4호
    • /
    • pp.661-670
    • /
    • 2003
  • 실체뷰는 뷰의 연산 결과를 미리 저장한 형태로서 질의 성능을 향상시키기 위해 질의 처리과정에 활용될 수 있다. 주어진 질의를 처리하는데 있어서 어떠한 실체뷰를 어떻게 이용할 것인가는 쉽게 해결될 수 있는 문제가 아니며 지금까지도 많은 연구가 이루어지고 있다. 질의를 처리하는데 실체뷰가 이용가능한가의 여부는 주어진 질의와 실체뷰간의 관계에 따라 결정된다. 본 논문에서는 질의처리에 실체뷰를 활용하는 새로운 방법을 제안한다. 우선 기존의 질의와 실체뷰간의 문법적 관계를 확장하여 의미적 관계를 이용한 활용 방안을 제시한다. 또한 원래의 질의에는 포함되지 않는 릴레이션을 갖는 실체뷰의 활용 방안에 대해서도 논의한다. 이를 위해 본 논문에서는 실체뷰의 활용을 위한 조건들을 제시하고 이 조건들을 검증하고 질의를 재구성하는 알고리즘을 제시한다.

계량화된 지식 추상화 계층을 이용한 협력적 질의 처리 (Cooperative Query Answering Using the Metricized Knowledge Abstraction Hierarchy)

  • 신명근
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권3호
    • /
    • pp.87-96
    • /
    • 2006
  • 데이터베이스 시스템에서 협력적 질의응답이란 질의 내용과 정확히 일치하는 자료뿐만 아니라 좀 더 넓은 인근 범위의 자료 또는 근사적인 자료를 검색해 주는 것을 말한다. 협력적 질의응답은 질의 분석, 질의 유연화, 유연화된 질의에 따른 근사적 자료 제공의 세 단계로 이루어져 있다. 질의 유연화를 수행하기 위해 의미적 관계를 표현하는 지식추상화 방법과 자료 사이의 정량적인 유사도를 거리로 표현하는 방법들이 지식표현 방법으로 사용된다. 본 논문에서는 보다 효과적으로 질의 유연화 단계를 지원하기 위해, 다단계 데이터 추상화 계층과 거리 척도를 지원하는 계량화된 지식추상화 계층(MKAH: Metricized Knowledge Abstraction Hierarchy)을 제안한다. MKAH는 카테고리화 될 수 있는 자료에 대해 질의 유연화를 효과적으로 지원하며 두 값 사이의 정량적인 의미상의 유사도를 제공하여, 질의 결과에 순위가 매겨질 수 있도록 한다. MKAH의 실용성과 효율성을 검증하기 위하여 경력직 검색 분야에 대한 원형 시스템을 구현해보았다. 다양한 실험을 통하여 MKAH가 풍부한 의미 표현이 가능하면서 질적으로도 높은 거리 척도를 제공해 준다는 것을 보였다. 그 결과 MKAH를 채택하는 도메인은 다른 정량적인 숫자 도메인과 호환될 수 있다는 점과, 큰 규모의 시스템을 만드는 데에도 장점이 있음을 확인하였다.

  • PDF

지식 표현 방식을 이용한 근사 질의응답 기법 (An Approximate Query Answering Method using a Knowledge Representation Approach)

  • 이선영;이종연
    • 한국산학기술학회논문지
    • /
    • 제12권8호
    • /
    • pp.3689-3696
    • /
    • 2011
  • 의사결정 지원시스템에서 작업자들은 대량의 데이터 집계 연산을 요구하며, 데이터에 대한 정확한 응답보다는 경향 분석에 더 많은 관심을 가진다. 그러므로 정확한 응답보다 빠른 근사 질의응답을 제공하는 것이 필요하며 그것을 실현하기 위한 근사질의 응답 기법의 연구가 필요하다. 따라서 본 논문에서는 기존 연구들의 단점을 보안하고 근사 응답의 정확성을 향상시킬 수 있는 Fuzzy C-Means (FCM) 클러스터링 기반 Adaptive Neuro-Fuzzy Inference System (ANFIS)을 이용한 근사 질의응답 기법을 제안한다. FCM-ANFIS을 이용한 근사 질의응답 기법은 다차원 데이터의 지식 표현 모델을 생성함으로써 거대한 다차원 데이터 큐브에 직접적인 접근 없이 집계 질의 수행이 가능하다. 비교실험을 통하여 제안된 기법이 기존의 NMF 기법보다 근사 질의응답의 정확성이 향상되었음을 확인한다.

QA 시스템에서 질의 패턴을 이용한 질의 확장 기법 (A Query Expansion Technique using Query Patterns in QA systems)

  • 김혜정;부기동
    • 한국산업정보학회논문지
    • /
    • 제12권1호
    • /
    • pp.1-8
    • /
    • 2007
  • QA(질의응답) 시스템은 질의에서 요구하는 정답 유형 및 질의에 사용된 용어를 적용하여 보다 정확한 답을 추출하고자 한다. 그러나 질의에 사용된 용어들이 문서에 그대로 사용되지 않고 같은 의미의 다른 어휘로 출현하기도 하며, 혹은 다른 문법적 정보를 가진 카테고리로 등장하여 정답 추출에 어려움이 따른다. 따라서 본 논문은 질의에서 사용된 의미적으로 더 가까운 단어들로 구성되는 심층적 질의 카테고리의 질의 패턴을 이용한 질의 확장 방법론을 제안한다. 제안한 방법은 질의 유형에 따른 개념 리스트를 우선 구축하고, 학습 알고리즘에 의해 각 질의 카테고리에 대한 개념 리스트를 구축한다. 실험의 결과로서 제안한 방법의 성능이 향상되었음을 입증하였다.

  • PDF

질의 응답 시스템에서 심층적 질의 카테고리의 개념 커버리지에 기반한 의미적 질의 확장 (Semantic Query Expansion based on Concept Coverage of a Deep Question Category in QA systems)

  • 김혜정;강보영;이상조
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제32권3호
    • /
    • pp.297-303
    • /
    • 2005
  • 질의응답(Question Answering) 시스템은 질의에서 요구하는 정답 유형(Answer type) 및 질의에 사용된 용어를 적용하여 보다 정확한 답을 추출하고자 한다. 그러나 질의에 사용된 용어들이 문서에 그대로 사용되지 않고 같은 의미의 다른 어휘로 출현하기도 하며, 흑은 다른 문법적 정보를 가진 카테고리에 등장하여 정답 추출에 어려움이 따른다. 만약, 질의에서 요구하는 정보유형을 보다 깊게 세분화하고, 세분화된 질의 유형과 개념적으로 유사한 문장을 대상으로 정답 추출을 수행할 수 있다면 보다 정확한 정답을 추출할 수 있을 것이다. 따라서, 본 논문은 심층 질의 카테고리의 개념 커버리지에 기반한 효과적인 의미적 질의 확장 방법론을 제안한다. 질의에서 요구하는 정보 유형을 보다 세분화된 심충 질의 카테고리로 나누고, 이러한 심층 질의 카테고리를 표현하기 위해 동원되는 어휘 집합에 질의 확장을 적용함으로써 정답 추출의 성능을 향상시키고자 하였다. 제안된 시스템의 성능 평가를 위하여, TREC 문서 중 1991년도 WSJ(Wall Street Journal) 42,654건과 TREC-9의 질의를 대상으로 실험한 결과 질의 확장을 수행하지 않는 시스템의 경우 MRR(Mean reciprocal ratio) 측정에서 0.223의 결과를 보인 반면 제안된 시스템의 경우 0.50의 향상된 결과를 보였다.