Traditional keyword-based searching methods suffer from low accuracy and high complexity due to the rapid growth in the amount of information. Accordingly, many researchers attempt to implement a so-called semantic search which is based on the semantics of the user's query. Semantic information can be described using a semantic modeling language, such as Topic Map. In this paper, we propose a new method to map a topic map to a traditional Relational Database (RDB) without any information loss. Although there have been a few attempts to map topic maps to RDB, they have paid scant attention to handling multi-role topics. In this paper, we propose a new storage structure to map multi-role topics to traditional RDB. The proposed structure consists of a mapping table, role tables, and content tables. Additionally, we devise a query translator to convert a user's query to one appropriate to the proposed structure.
본 연구는 네트워크상에 분산된 데이터들의 이질적인 문제를 해결하고, 효율적인 데이터 통합을 위한 Topic Maps MetaData Registry(TMDR)기반의 쿼리 변환 기법을 제시한다. TMDR은 분산 데이터를 통합하기 위해 글로벌 스키마를 제공하여 각 로컬 데이터에서 발생하는 정보들 사이의 이질성 문제를 쿼리 변환 기법으로 해결한다. 이 기법은 eXtended Meta Data Registry(XMDR)의 Meta Schema Ontology(MSO)와 Topic Maps에서 연관 관계를 분석하여 로컬의 접근 정보를 관리하는 Meta Location(ML)의 정보를 통해 분산되어 있는 로컬 데이터들을 통합 접근할 수 있도록 한다. 처리방법은 TMDR을 이용하여 전역처리를 위한 글로벌 쿼리를 생성하고, 생성된 글로벌 쿼리는 로컬 스키마로 분해되어 네트워크를 통해 분산되어 있는 시스템들을 접근하도록 함으로써, 통합 접근이 가능하게 한다. 우리는 이를 위해 글로벌 쿼리를 로컬에 적응적인 쿼리로 변환하는 방안을 제안한다.
Journal of Information Science Theory and Practice
/
제1권3호
/
pp.33-46
/
2013
Despite limited success, today's information retrieval (IR) systems are not intelligent or reliable. IR systems return poor search results when users formulate their information needs into incomplete or ambiguous queries (i.e., weak queries). Therefore, one of the main challenges in modern IR research is to provide consistent results across all queries by improving the performance on weak queries. However, existing IR approaches such as query expansion are not overly effective because they make little effort to analyze and exploit the meanings of the queries. Furthermore, word sense disambiguation approaches, which rely on textual context, are ineffective against weak queries that are typically short. Motivated by the demand for a robust IR system that can consistently provide highly accurate results, the proposed study implemented a novel topic detection that leveraged both the language model and structural knowledge of Wikipedia and systematically evaluated the effect of query disambiguation and topic-based retrieval approaches on TREC collections. The results not only confirm the effectiveness of the proposed topic detection and topic-based retrieval approaches but also demonstrate that query disambiguation does not improve IR as expected.
본 논문에서는 추출 요약 방식과 질의어 기반의 요약 방식을 혼합한 문서 요약 방법에 관해서 기술한다. 학습문서를 이용해 주제어구 추출을 위한 학습 모델을 만든다. 학습 알고리즘은 Naive Bayesian, 결정트리, Supported Vector Machine을 이용한다. 구축된 모델을 이용하여 입력 문서로부터 주제어구 리스트를 자동으로 추출한다. 추출된 주제어구들을 질의어로 하여 이들의 국부적 유사도에 의한 기여도를 계산함으로써 요약문을 추출한다. 본 논문에서는 주제어구가 원문 요약에 미치는 영향과, 몇 개의 주제어구 추출이 문서 요약에 적당한지를 실험하였다. 추출된 요약문과 수동으로 추출한 요약문을 비교하여 결과를 평가하였으며, 객관적인 성능 평가를 위하여 MS-Word에 포함된 문서 요약 기능과 실험 결과를 비교하였다.
4차 산업 혁명 시대의 도래에 따라 쇼핑의 행태는 더욱 빠르게 오프라인에서 온라인으로 이동하고 있다. 온라인 쇼핑에서 고객의 정보요구를 가장 집약적으로 보여주는 것이 바로 검색 질의이다. 하지만 검색 분야에서도 검색 질의 관련 연구 사례는 많지 않으며 대부분의 검색 질의 연구 분야 선행 연구들은 연구자의 정성적인 판단에 근거하여 제한적인 주제와 데이터 기반으로 연구되어 왔다. 이에 본 연구는 검색 질의 연구 분야에 기계학습을 적용하여 검색 질의와 검색 이후 이용자가 조회한 문서명 로그를 기반으로 토픽모델링 수행 후 검색 질의 주제를 정의함으로써 데이터 기반의 정량적 방법론으로 15개의 검색 질의 주제 유형을 정의하였다. 또한 기존 검색어 자체만을 보고 판단하던 주제 유형에서 나아가 검색 행동특성을 반영한 유형을 정의하기 위하여 주성분 분석을 통해 주요 변수를 추출 후 각 주제별 검색 행동특성을 분석함으로써 검색 탐색 활성도, 상품 관여도에 따른 4가지의 새로운 검색 질의 유형 분류체계를 제시하였다. 본 연구결과는 효과적인 검색서비스 구축 및 검색 시스템 개발에 기여할 것으로 기대된다.
헬스 분야에서 정보 검색의 어려움 중의 하나는 일반 사용자들이 전문적인 용어들을 이해하기가 어렵다는 점이다. 헬스와 관련된 전문 용어들은 일반 사용자들이 검색어로 사용하기 어렵기 때문에 이러한 전문 용어들이 자동적으로 검색어에 더해질 수 있다면 좀 더 검색의 효과를 높일 수 있을 것이다. 제안된 검색어 확장 모델은 전문 용어를 포함하는 MeSH(Medical Subject Headings)를 검색어 확장을 위한 단어 후보 군으로 이용하였다. 문서들은 MeSH용어들로 표현이 되고 이렇게 표현된 문서들의 집합에 대해서 LDA(Latent Dirichlet Analysis) 토픽들이 생성된 후, (검색어+초기 검색어에 의해 검색된 상위 k개 문서들)에 연관된 토픽 단어들이 원래의 검색어를 확장하는 데 쓰여졌다. MeSH로 구성된 토픽 단어들은 임의로 정해진 토픽 확률 임계값과 토픽을 구성하는 단어의 확률 임계값보다 높았을 때 초기의 검색어에 포함되었다. 특정수의 토픽을 갖는 LDA 모델에서 이러한 적절한 임계값의 설정을 통해 선택된 토픽 단어들은 검색어 확장에 이용되어 검색시에 infAP(inferred Average Precision)와 infNDCG(inferred Normalized Discounted Cumulative Gain)를 높이는데 효과적으로 작용하였다. 또한 토픽 확률값과 토픽 단어의 확률값을 곱하여 계산된 토픽 단어의 스코어가 높은 상위 k개의 단어를 검색어를 확장하는 데 이용하였을 때에도 검색의 성능이 향상될 수 있음을 확인하였다.
정보검색에서 질의확장은 가장 널리 알려진 기술로서 사용자가 입력한 질의에 외부적인 지식을 추가해서 조건에 맞게 질의를 확장시켜 검색도구의 능력을 향상시키는데 많이 사용되어 왔다. 하지만, 질의에 사용되는 단어의 애매모호함은 검색도구가 성능을 낮추기 때문에 이러한 문제는 여전히 풀어야 할 과제로 남아있다. 본 논문에서는 단어의 의미를 나타낼 수 있는 도메인을 사용해서 이러한 문제를 해결하는 방법을 제시한다. 특히 토픽 모델을 이용한 도메인 중심 모델을 사용해서 질의를 확장하는 기술을 제안한다. 실험은 기존 모델들과 비교로 이루어졌고, 그 결과 제시된 방법은 높은 성능을 보이는 것으로 나타났다.
사용자 입력 질의와 웹 문서에 포함된 단어들의 형태적 일치를 검사하여 관련 문서를 검색하는 검색엔진은 사용자의 개인별 관심 분야를 반영하는 검색 결과를 생성하기 어렵다. 본 논문에서는 개인별 관심사를 파악하여 질의 의도에 적합한 내용의 문서를 검색하는 개인화된 웹 검색 방법을 제안한다. 개인화 검색의 성능은 사용자의 개인적 관심사를 정확하게 표현하는 우수한 사용자 프로파일을 생성하는 전략에 좌우된다. 본 연구에서 개인 프로파일은 사용자가 최근 입력한 질의어들과 검색에서 클릭했던 문서들에 나타나는 주제어들이 출현 빈도를 반영한 가중치와 함께 등록된 데이터베이스이다. 특히 중의적 질의어의 정확한 의미를 결정하기 위해 워드넷을 기반으로 프로파일에 등록된 단어들과 의미 유사도를 계산한다. 기존 웹 검색 시스템의 사용자 측에 질의확장 모듈과 순위재계산 모듈을 추가하는 확장모듈을 구축하여 비교 실험하였으며, 본 연구의 방법을 적용한 개인화 웹 검색의 결과는 특히 10위 이내 상위의 결과 문서들에 대해 92%의 정확률과 82%의 재현율을 보여 향상된 성능을 검증하였다.
In this paper, the study focus on continuous query in EPC Information Services(EPCIS) middleware which is a component of RFID system. We can consider EPCIS as a data stream system with a repository. In our work continuous query is implemented in two query execution model. One is standing query model another is traditional query execution model in which continuous query run over database periodically. Furthermore a balance strategy is presented. It is used to determine which continuous query implementation model is suitable for the query. Finally we conclude our work and issue some research topic for future work.
대표적인 시맨틱 웹 서비스 발견 기술은 OWL-S와 MIT의 Process Handbook이 있다. 그러나. OWL-S는 개발 초기 단계이기 때문에, 아직 효과적인 웹 서비스 발견을 제공하기에는 몇 가지 제약 조건을 가지고 있다. 예를 들어. 정보 전송을 위한 제악 조건과 실행에 따른 상태 변환 정보를 정의하고 있지 않다. 또한. 사용자가 원하는 프로세스들의 시맨틱 정보들을 정의하고 있지 않다. 반면, MIT Process Handbook은 OWL-S와 같이 서비스 모델에 대한 상세한 정보들을 정의하고 있지 않아, 서비스 작성에 필요한 서비스들을 찾기가 어렵다. 그러므로, 본 논문에서는 Topic Maps 기반의 TM-S(Topic Maps for Service)를 제안하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.