Traditional keyword-based searching methods suffer from low accuracy and high complexity due to the rapid growth in the amount of information. Accordingly, many researchers attempt to implement a so-called semantic search which is based on the semantics of the user's query. Semantic information can be described using a semantic modeling language, such as Topic Map. In this paper, we propose a new method to map a topic map to a traditional Relational Database (RDB) without any information loss. Although there have been a few attempts to map topic maps to RDB, they have paid scant attention to handling multi-role topics. In this paper, we propose a new storage structure to map multi-role topics to traditional RDB. The proposed structure consists of a mapping table, role tables, and content tables. Additionally, we devise a query translator to convert a user's query to one appropriate to the proposed structure.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2012.10a
/
pp.966-969
/
2012
This study suggests a query conversion method based on Topic Maps MetaData Registry(TMDR) in order to solve heterogeneity problems distributed in networks and to integrate data efficiently. In order to integrate distributed data, TMDR provides global schema and it solves heterogeneity problem within local data using query conversion method. After analyzing relationship between Meta Schema Ontology(MSO) of eXtended Meta Data Registry(XMDR) and Topic Maps, this method allows integrated access through Meta Location(ML) which manages accessing information of local data. The processing method is to produce a global query for global processing by using TMDR and then to make the produced global query approach to systems distributed through networks so that allows integrated access at the end. For this, we propose a method to convert a global query into a query which is adaptive to local query.
Journal of Information Science Theory and Practice
/
v.1
no.3
/
pp.33-46
/
2013
Despite limited success, today's information retrieval (IR) systems are not intelligent or reliable. IR systems return poor search results when users formulate their information needs into incomplete or ambiguous queries (i.e., weak queries). Therefore, one of the main challenges in modern IR research is to provide consistent results across all queries by improving the performance on weak queries. However, existing IR approaches such as query expansion are not overly effective because they make little effort to analyze and exploit the meanings of the queries. Furthermore, word sense disambiguation approaches, which rely on textual context, are ineffective against weak queries that are typically short. Motivated by the demand for a robust IR system that can consistently provide highly accurate results, the proposed study implemented a novel topic detection that leveraged both the language model and structural knowledge of Wikipedia and systematically evaluated the effect of query disambiguation and topic-based retrieval approaches on TREC collections. The results not only confirm the effectiveness of the proposed topic detection and topic-based retrieval approaches but also demonstrate that query disambiguation does not improve IR as expected.
This paper describes the hybrid document summarization using the indicative summarization and the query-based summarization. The learning models are built from teaming documents in order to extract topic phrases. We use Naive Bayesian, Decision Tree and Supported Vector Machine as the machine learning algorithm. The system extracts topic phrases automatically from new document based on these models and outputs the summary of the document using query-based summarization which considers the extracted topic phrases as queries and calculates the locality-based similarity of each topic phrase. We examine how the topic phrases affect the summarization and how many phrases are proper to summarization. Then, we evaluate the extracted summary by comparing with manual summary, and we also compare our summarization system with summarization mettled from MS-Word.
KIPS Transactions on Software and Data Engineering
/
v.10
no.6
/
pp.223-234
/
2021
Recent advances in the 4th Industrial Revolution have accelerated the change of the shopping behavior from offline to online. Search queries show customers' information needs most intensively in online shopping. However, there are not many search query research in the field of search, and most of the prior research in the field of search query research has been studied on a limited topic and data-based basis based on researchers' qualitative judgment. To this end, this study defines the type of search query with data-based quantitative methodology by applying machine learning to search research query field to define the 15 topics of search query by conducting topic modeling based on search query and clicked document information. Furthermore, we present a new classification system of new search query types representing searching behavior characteristics by extracting key variables through principal component analysis and analyzing. The results of this study are expected to contribute to the establishment of effective search services and the development of search systems.
Journal of Korean Library and Information Science Society
/
v.52
no.1
/
pp.79-108
/
2021
Information retrieval in the health field has several challenges. Health information terminology is difficult for consumers (laypeople) to understand. Formulating a query with professional terms is not easy for consumers because health-related terms are more familiar to health professionals. If health terms related to a query are automatically added, it would help consumers to find relevant information. The proposed query expansion (QE) models show how to expand a query using MeSH terms. The documents were represented by MeSH terms (i.e. Bag-of-MeSH), found in the full-text articles. And then the MeSH terms were used to generate LDA (Latent Dirichlet Analysis) topic models. A query and the top k retrieved documents were used to find MeSH terms as topic words related to the query. LDA topic words were filtered by threshold values of topic probability (TP) and word probability (WP). Threshold values were effective in an LDA model with a specific number of topics to increase IR performance in terms of infAP (inferred Average Precision) and infNDCG (inferred Normalized Discounted Cumulative Gain), which are common IR metrics for large data collections with incomplete judgments. The top k words were chosen by the word score based on (TP *WP) and retrieved document ranking in an LDA model with specific thresholds. The QE model with specific thresholds for TP and WP showed improved mean infAP and infNDCG scores in an LDA model, comparing with the baseline result.
In the area of Information Retrieval, Query Expansion is a well-known technique that uses external knowledge to increase an inquiry generated by users. However, ambiguous words used in the query decrease the performance of search tools. In this paper, we propose a solution to the above problem, by using domain knowledge which identifies the meaning of words in the query. In particular, we present a domain centered query expansion technique that magnifies a query using domains. By comparing with various query expansion models, we demonstrate that the proposed model performs better than the other models.
Journal of the Korea Academia-Industrial cooperation Society
/
v.17
no.2
/
pp.690-696
/
2016
Search engines that rely on morphological matching of user query and web document content do not support individual interests. This research proposes a personalized web search scheme that returns the results that reflect the users' query intent and personal preferences. The performance of the personalized search depends on using an effective user profiling strategy to accurately capture the users' personal interests. In this study, the user profiles are the databases of topic words and customized weights based on the recent user queries and the frequency of topic words in click history. To determine the precise meaning of ambiguous queries and topic words, this strategy uses WordNet to calculate the semantic relatedness to words in the user profile. The experiments were conducted by installing a query expansion and re-ranking modules on the general web search systems. The results showed that this method has 92% precision and 82% recall in the top 10 search results, proving the enhanced performance.
In this paper, the study focus on continuous query in EPC Information Services(EPCIS) middleware which is a component of RFID system. We can consider EPCIS as a data stream system with a repository. In our work continuous query is implemented in two query execution model. One is standing query model another is traditional query execution model in which continuous query run over database periodically. Furthermore a balance strategy is presented. It is used to determine which continuous query implementation model is suitable for the query. Finally we conclude our work and issue some research topic for future work.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.109-111
/
2004
대표적인 시맨틱 웹 서비스 발견 기술은 OWL-S와 MIT의 Process Handbook이 있다. 그러나. OWL-S는 개발 초기 단계이기 때문에, 아직 효과적인 웹 서비스 발견을 제공하기에는 몇 가지 제약 조건을 가지고 있다. 예를 들어. 정보 전송을 위한 제악 조건과 실행에 따른 상태 변환 정보를 정의하고 있지 않다. 또한. 사용자가 원하는 프로세스들의 시맨틱 정보들을 정의하고 있지 않다. 반면, MIT Process Handbook은 OWL-S와 같이 서비스 모델에 대한 상세한 정보들을 정의하고 있지 않아, 서비스 작성에 필요한 서비스들을 찾기가 어렵다. 그러므로, 본 논문에서는 Topic Maps 기반의 TM-S(Topic Maps for Service)를 제안하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.