• 제목/요약/키워드: Query Term Cluster

검색결과 12건 처리시간 0.026초

잠정적 부적합 문서와 어휘 근접도를 반영한 어휘 그래프 기반 질의 확장 (Query Expansion Based on Word Graphs Using Pseudo Non-Relevant Documents and Term Proximity)

  • 조승현;이경순
    • 정보처리학회논문지B
    • /
    • 제19B권3호
    • /
    • pp.189-194
    • /
    • 2012
  • 본 논문에서는 정보검색 성능 향상을 위해 잠정적 적합 문서 및 부적합 문서와 어휘 그래프를 이용한 질의 확장 방법을 제안한다. 언어모델에 의한 초기 검색 결과 상위 문서들은 질의 어휘 조합과 근접도를 기반으로 핵심 질의를 포함하는 문서들로 구성된 핵심 질의 클러스터와 핵심 질의를 포함하지 않는 문서들로 구성된 비핵심 질의 클러스터로 분류된다. 이때, 핵심 질의 클러스터는 잠정적 적합 문서 집합으로, 비핵심 질의 클러스터는 잠정적 부적합 문서 집합으로 본다. 각 클러스터는 어휘들과 질의 어휘와의 가까운 정도에 따라 어휘 그래프로 표현된다. 각 어휘에 대한 중요도는 핵심 질의 클러스터 그래프에서의 어휘 가중치에서 비핵심 질의 클러스터 그래프에서의 어휘의 가중치를 빼서 계산한다. 이는 부적합 문서에서 높은 가중치를 갖는 어휘는 확장 질의에서 제외시키는 역할을 한다. 중요도가 높은 어휘 순으로 확장할 질의를 선택한다. 웹 문서 테스트컬렉션인 TREC WT10g에서의 실험 결과에서 제안 방법이 언어모델(LM)에 비해 평균 정확률의 평균(MAP)에서 9.4% 성능 향상을 보였다.

핵심질의 클러스터와 단어 근접도를 이용한 문서 검색 정확률 향상 기법 (A Method for Precision Improvement Based on Core Query Clusters and Term Proximity)

  • 장계훈;이경순
    • 정보처리학회논문지B
    • /
    • 제17B권5호
    • /
    • pp.399-404
    • /
    • 2010
  • 본 논문에서는 상위 검색결과 문서의 정확률을 향상시키기 위하여 핵심질의 클러스터와 단어 근접도를 이용해 재순위화하는 방법을 제안한 다. 언어모델에 의한 초기 검색결과를 상위 문서에 대해 발생한 질의어휘 조합을 기반으로 문서를 클러스터링한다. 질의어휘 조합 클러스터에 대해 질의어휘 사이의 근접도를 이용하여 핵심질의 클러스터를 선택한다. 질의의 문맥정보를 이용해 핵심질의 클러스터의 문서를 재순위화한다. 뉴스집합인 TREC AP 컬렉션에 대해 언어모델과 제안한 방법의 문서 정확률을 비교한 결과 제안방법이 언어모델에 비해 상위 100개 문서(P@100)에서 11.2% 성능이 향상되었다.

한국어 정보 검색에서 의미적 용어 불일치 완화 방안 (Alleviating Semantic Term Mismatches in Korean Information Retrieval)

  • 윤보현;박성진;강현규
    • 한국정보처리학회논문지
    • /
    • 제7권12호
    • /
    • pp.3874-3884
    • /
    • 2000
  • 정보검색시스템은 색인어와 질의어가 정확히 일치하지 않더라도 사용자 질의에 적합한 문서를 검색할 수 있어야 한다. 그러나, 색인어와 질의어간의 용어 불일치는 검색성능의 개선에 심각한 장애요소로 작용해 왔다. 따라서, 본 논문에서는 문서 코퍼스의 단어들간에 자동 용어 정규화를 수행하고, 용어 정규화의 산물을 한국어 정보검색 시스템에 적용하는 방안을 제시한다. 용어 불일치를 완화하기 위해 두가지 용어 정규화, 동치부류와 공기단어 클러스터를 수행한다. 첫째, 음역어, 절차오류, 그리고 동의어를 위해 문맥 유사도를 이용하여 동치부류로 구축하는 작업이다. 둘째, 상호정보와 단어 문맥의 조합을 이용하여 단어 유사도를 계산하고 문맥 기반 용어를 정규화한다. 그런 다음, K-means 알고리즘을 이용하여 자율 클러스터링을 수행하고 공기단어 클러스터를 구축한다. 본 논문에서는 이러한 용어 정규화의 산물들을 용어 불일치를 완화하기 위해 질의어 확장과정에서 사용한다. 다시 말해서 동치부류와 공기단어 클러스터는 새로운 용어로 질의를 확장하는 자원으로서 사용된다. 이러한 질의확장으로 사용자는 질의어에 음역어를 추가하여 질의어를 포괄적으로 만들거나 특정어를 추가하여 질의어를 세밀하게 만들 수 있다. 질의어 확장을 위해 두 가지 상호보완적인 방법인 용어 제시와 용어 적합성 피드백을 이용한다. 실험 결과는 제안된 시스템이 의미적 용어 불일치를 완화할 수 있고, 적절한 유사도 값을 제공할 수 있음을 보여준다. 결과적으로 제안한 시스템이 정보 검색 시스템의 검색 효율을 향상시킬 수 있음을 알 수 있다.

  • PDF

2단계 유사관계 행렬을 기반으로 한 순위 재조정 검색 모델 (A Re-Ranking Retrieval Model based on Two-Level Similarity Relation Matrices)

  • 이기영;은희주;김용성
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권11호
    • /
    • pp.1519-1533
    • /
    • 2004
  • 웹 기반의 학술분야 전문 검색 시스템은 사용자의 정보 요구 표현을 극히 제한적으로 허용함으로써 검색된 정보의 내용 분석과 정보 습득의 과정이 일관되지 못해 무분별한 정보 제공이 이루어진다. 본 논문에서는 용어의 상대적인 중요 정도를 축소용어 집합으로 구성하여 검색 시스템의 높은 시간 복잡도를 해결할 수 있도록 퍼지 검색 모델을 적용하였다. 또한 퍼지 호환관계의 특성을 만족하는 유사관계 행렬을 통해 사용자 질의를 정확하게 반영할 수 있도록 클러스터 검색을 수행하였다. 본 논문에서 제안한 퍼지 검색과 문서 클러스터 검색의 유사도 결합을 통한 순위 재조정 검색 모델은 검색 성능을 표현하는 정확률과 재현율 척도에서 향상됨을 입증하였다.

캐쉬메카니즘을 이용한 시맨틱 스키마 데이터 처리 (Semantic schema data processing using cache mechanism)

  • 김병곤;오성균
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권3호
    • /
    • pp.89-97
    • /
    • 2011
  • 네크워크상의 분산되어 있는 정보를 접근하는 온톨로지와 같은 시맨틱 웹 정보 시스템에서는 효율적인 질의 처리를 위하여 질의 응답 시간을 줄여주는 향상된 캐쉬 메카니즘을 필요로 한다. 특히, P2P 네트워크 시스템은 웹 환경의 기본적인 하부 구조를 이루고 있으며, 질의가 발생하면, 소스 피어(Peer)로의 데이터 전송량을 줄이는 문제가 효율적인 질의 처리의 중요한 부분이다. 전통적인 데이터베이스 캐쉬 메카니즘으로부터 현재의 웹 환경에 적합한 질의 메카니즘들이 연구되어 왔으며, 질의 처리 결과를 캐쉬하는 것은 입력 질의 요구를 빠른 시간에 바로 사용자에게 전달할 수 있다. 웹 환경에서는 시맨틱 캐싱 방법이 연구되어 왔으며, 이는 캐쉬를 의미적인 영역들로 이루어진 공간으로 관리하는 개념이며, 논리적인 캐싱 단위가 질의와 질의 결과이므로 웹 환경에서 적합한 개념이다. 본 연구에서는 온톨로지와 같은 시맨틱 웹 정보가 클러스터 단위로 여러 피어에 분산되어 있는 경우에 캐쉬 메카니즘을 이용하여 효율적인 질의 처리가 이루어지도록 하는 방법을 제시한다. 특히, 캐쉬를 유지하고 처리하는 방법으로 스키마를 이용한 캐쉬 데이터 필터링 방법과 온톨로지와 질의 결과의 유사도를 측정하여 캐쉬 대체 영역 선택에 사용하는 방법을 제시한다.

SDP Master 이중화를 지원하는 확장 SLDS 설계 및 구현 (Design and Implementation of the Extended SLDS Supporting SDP Master Replication)

  • 신인수;강홍구;이기영;한기준
    • 한국공간정보시스템학회 논문지
    • /
    • 제10권3호
    • /
    • pp.79-91
    • /
    • 2008
  • 최근 이동체의 위치 데이타를 활용한 위치 기반 서비스에 대한 관심이 높아지면서 보다 효율적인 이동체 위치 데이타 관리 시스템으로 클러스터 기반 분산 컴퓨팅 구조인 GALIS(Gracefully Aging Location Information System)가 제시되었다. 그러나, GALIS의 서브 시스템인 SLDS(Short-term Location Data Subsystem)에서 SDP Master는 다수의 SDP(Short-term Data Processor) 노드들이 처리한 질의 결과를 취합하여 Client로 보내는 구조이기 때문에 SDP Master에 장애가 발생하거나 부하가 집중될 경우에 서비스가 중지되거나 Client로의 응답 시간이 길어지는 문제가 있다. 따라서, 본 논문에서는 기존 SLDS에 이중화를 지원하기 위해 SDP Master를 추가하여 기존 SLDS의 안정성과 가용성을 높이고 이동체 위치 데이타의 질의 처리 성능을 향상시킨 확장 SLDS를 설계 및 구현하였다. 확장 SLDS에서는 이중화된 두 대의 SDP Master를 가동하여 한 SDP Master에 장애가 발생하더라도 다른 SDP Master가 서비스를 계속 제공함으로써 현재 위치 데이타의 실시간성과 시스템의 안정성을 보장한다. 또한, 확장 SLDS는 두 대의 SDP Master가 질의 처리를 분산하여 수행하기 때문에 Client로의 응답 시간을 줄일 수 있다. 마지막으로 확장 SLDS의 장애 테스트와 질의 처리 성능을 실험하였으며, 이러한 실험을 통해 확장 SLDS의 고신뢰성 및 고가용성을 검증하였다.

  • PDF

검색 문서의 분류 정보에 기반한 용어 클러스터 질의 확장 모델 (A Term Cluster Query Expansion Model Based on Classification Information of Retrieval Documents)

  • 강현수;강현규;박세영;이용석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1999년도 제11회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.7-12
    • /
    • 1999
  • 정보 검색 시스템은 사용자 질의의 키워드들과 문서들의 유사성(similarity)을 기준으로 관련 문서들을 순서화하여 사용자에게 제공한다. 그렇지만 인터넷 검색에 사용되는 질의는 일반적으로 짧기 때문에 보다 유용한 질의를 만들고자 하는 노력이 지금까지 계속되고 있다. 그러나 키워드에 포함된 정보가 제한적이기 때문에 이에 대한 보완책으로 사용자의 적합성 피드백을 이용하는 방법을 널리 사용하고 있다. 본 논문에서는 일반적인 적합성 피드백의 가장 큰 단점인 빈번한 사용자 참여는 지양하고, 시스템에 기반한 적합성 피드백에서 배제한 사용자 참여를 유도하는 검색 문서의 분류 정보에 기반한 용어 클러스터 질의 확장 모델(Term Cluster Query Expansion Model)을 제안한다. 이 방법은 검색 시스템에 의해 검색된 상위 n개의 문서에 대하여 분류기를 이용하여 각각의 문서에 분류 정보를 부여하고, 문서에 부여된 분류 정보를 이용하여 분류 정보의 수(m)만큼으로 문서들을 그룹을 짓는다. 적합성 피드백 알고리즘을 이용하여 m개의 그룹으로부터 각각의 용어 클러스터(Term Cluster)를 생성한다. 이 클러스터가 사용자에게 문서 대신에 피드백의 자료로 제공된다. 실험 결과, 적합성 알고리즘 중 Rocchio방법을 이용할 때 초기 질의보다 나은 성능을 보였지만, 다른 연구에서 보여준 성능 향상은 나타내지 못했다. 그 이유는 분류기의 오류와 문서의 특성상 한 영역으로 규정짓기 어려운 문서가 존재하기 때문이다. 그러나 검색하고자 하는 사용자의 관심 분야나 찾고자 하는 성향이 다르더라도 시스템에 종속되지 않고 유연하게 대처하며 검색 성능(retrieval effectiveness)을 향상시킬 수 있다.사용되고 있어 적응에 문제점을 가지기도 하였다. 본 연구에서는 그 동안 계속되어 온 한글과 한잔의 사용에 관한 논쟁을 언어심리학적인 연구 방법을 통해 조사하였다. 즉, 글을 읽는 속도, 글의 의미를 얼마나 정확하게 이해했는지, 어느 것이 더 기억에 오래 남는지를 측정하여 어느 쪽의 입장이 옮은 지를 판단하는 것이다. 실험 결과는 문장을 읽는 시간에서는 한글 전용문인 경우에 월등히 빨랐다. 그러나. 내용에 대한 기억 검사에서는 국한 혼용 조건에서 더 우수하였다. 반면에, 이해력 검사에서는 천장 효과(Ceiling effect)로 두 조건간에 차이가 없었다. 따라서, 본 실험 결과에 따르면, 글의 읽기 속도가 중요한 문서에서는 한글 전용이 좋은 반면에 글의 내용 기억이 강조되는 경우에는 한자를 혼용하는 것이 더 효율적이다.이 높은 활성을 보였다. 7. 이상을 종합하여 볼 때 고구마 끝순에는 페놀화합물이 다량 함유되어 있어 높은 항산화 활성을 가지며, 아질산염소거능 및 ACE저해활성과 같은 생리적 효과도 높아 기능성 채소로 이용하기에 충분한 가치가 있다고 판단된다.등의 관련 질환의 예방, 치료용 의약품 개발과 기능성 식품에 효과적으로 이용될 수 있음을 시사한다.tall fescue 23%, Kentucky bluegrass 6%, perennial ryegrass 8%) 및 white clover 23%를 유지하였다. 이상의 결과를 종합할 때, 초종과 파종비율에 따른 혼파초지의 건물수량과 사료가치의 차이를 확인할 수 있었으며, 레드 클로버 + 혼파 초지가 건물수량과 사료가치를 높이는데 효과적이었다.\ell}$ 이었으며 , yeast extract 첨가(添加)하여 배양시(培養時)는 yeast extract

  • PDF

효율적인 병렬정보검색을 위한 색인어 군집화 및 분산저장 기법 (Term Clustering and Duplicate Distribution for Efficient Parallel Information Retrieval)

  • 강재호;양재완;정성원;류광렬;권혁철;정상화
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권1_2호
    • /
    • pp.129-139
    • /
    • 2003
  • 인터넷과 같은 대량의 정보에 대응할 수 있는 고성능 정보검색시스템을 구축하기 위해서는 지금까지 고가의 중대형컴퓨터를 주로 활용하여 왔으나. 최근 가격대 성능비가 높은 PC 클러스터 시스템을 활용하는 방안이 경제적인 대안으로 떠오르고 있다. PC 클러스터 상에서의 병렬정보검색시스템을 효율적으로 운영하기 위해서는 사용자가 입력한 질의를 처리하는데 요구되는 개별 PC의 디스크 I/O 및 검색관련 연산을 모든 PC에 가능한 균등하게 분배할 필요가 있다. 본 논문에서는 같은 질의에 동시에 등장할 가능성이 높은 색인어들끼리 군집화하고 생성된 군집을 활용하여 색인어들을 각 PC에 분배함으로써 보다 높은 수준의 병렬화를 달성할 수 있는 방안을 제시한다. 또한 일부 PC의 결함 또는 유지보수 등의 원인에 의한 서비스 중지상황에도 적극적으로 대처하기 위하여 색인어 역파일을 중복되게 분산저장하는 기법을 제안한다. 대용량 말뭉치를 활용한 실험결과 본 논문에서 제시하는 분산 및 중복저장기법이 충분한 효율성과 실용성이 있음을 확인하였다.

2단계 퍼지 지식베이스를 이용한 질의 처리 모델 (Query Processing Model Using Two-level Fuzzy Knowledge Base)

  • 이기영;김영운
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권4호
    • /
    • pp.1-16
    • /
    • 2005
  • 웹 기반의 학술분야 전문 검색 시스템은 사용자의 정보 요구 표현을 극히 제한적으로 허용함으로써 검색된 정보의 내용 분석과 정보 습득의 과정이 일관되지 못해 무분별한 정보 제공이 이루어진다. 따라서 본 논문에서는 문서 지식 구조를 파악하여 사용자 질의 용어와 색인어 사이의 내용 기반 유사도를 반영한 순위 재조정 모델을 제안한다. 이를 위해 전자는 시소러스 및 유사관계 행렬을 구축하여 주제 분석 메커니즘을 제공하고, 후자는 사용자 요구를 분석하기 위해 질의 확장 등의 탐색 모형을 수립하는 알고리즘을 제안한다. 따라서 본 논문에서 제안한 알고리즘은 검색 시스템의 정보 구조를 활용한 검색으로 재현율을 유지하면서 동시에 기존 퍼지 검색 모델의 단점인 정확률을 향상시키는 2단계 탐색모형을 수립하는 내용 기반검색 기법이라 할 수 있다.

  • PDF

법령정보 검색을 위한 생활용어와 법률용어 간의 대응관계 탐색 방법론 (Term Mapping Methodology between Everyday Words and Legal Terms for Law Information Search System)

  • 김지현;이종서;이명진;김우주;홍준석
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.137-152
    • /
    • 2012
  • 인터넷 환경에서 월드 와이드 웹이 등장한 이후 웹을 통해 수많은 웹 페이지들이 생산됨에 따라 사용자가 원하는 정보를 검색하기 위한 다양한 형태의 검색 서비스가 여러 분야에서 개발되어 활용되고 있다. 특히 법령 검색은 사용자가 현재 자신이 처한 상황에 필요한 법령을 검색하여 법령에 대한 지식을 얻기 위한 창구로써 국민의 편의를 제공하기 위해 반드시 필요한 서비스 중 하나이다. 이에 법제처는 2009년부터 국민 누구나 편리하게 법령에 관련된 정보를 검색할 수 있도록 국가의 법령뿐만 아니라 행정규칙이나 판례 등 모든 법령정보를 검색할 수 있는 검색 서비스를 제공하고 있다. 하지만 현재까지의 검색엔진 기술은 기본적으로 사용자가 입력한 질의어를 문서에 포함하고 있는지의 여부에 따라 해당 문서를 검색 결과로 제시한다. 법령 검색 서비스 또한 해당 법령에 등장하는 키워드를 활용하여 사용자에게 검색 결과를 제공해주고 있다. 따라서 법제처의 이런 노력에도 불구하고 법령이 전문가의 시각에서 작성되었기 때문에 법에 익숙하지 않은 일반 사용자는 자신이 필요한 법령을 검색하기 어려운 한계점을 가지고 있다. 이는 일반적으로 법령에 사용되는 용어들과 일반 사용자가 실생활에 사용하는 단어가 서로 상이하기 때문에 단순히 키워드의 단순 매칭 형태의 검색엔진에서는 사용자들이 주로 사용하는 생활용어를 이용해서 원하는 법령을 검색할 수 없다. 본 연구에서는 법률용어에 관한 사전지식이 부족한 일반 사용자가 일상에서 주로 사용되는 생활용어를 이용하여 키워드 기반의 법령정보 검색 사이트에서 정확한 법령정보 검색이 가능하도록 생활용어와 법률용어 간의 대응관계를 탐색하고 이를 이용하여 법령을 검색할 수 있는 방법론을 제안하고자 한다. 우선 생활용어와 법률용어 간의 대응관계를 발견하기 위해 본 논문에서는 사용자들의 집단지성을 활용한다. 이를 위해 사용자들이 블로그의 분류 및 관리, 검색에 활용하기 위해 작성한 태그 정보를 이용하여 질의어인 생활용어와 관련된 태그들을 수집한다. 수집된 태그들은 K-means 군집분석 기법을 통해 태그들을 클러스터링하고, 생활용어와 가장 가까운 법률용어를 찾기 위한 평가 방법을 통해 생활용어에 대응될 수 있는 적절한 법률용어를 선택한다. 선택된 법률용어는 해당 생활용어와 명시적인 관계성이 부여되며, 이러한 생활용어와 법률용어와의 관계는 온톨로지 기반의 시소러스를 기술하기 위한 SKOS를 이용하여 표현된다. 이렇게 구축된 온톨로지는 사용자가 생활용어를 이용하여 검색을 수행할 경우 생활용어에 대응되는 적절한 법률용어를 찾아 법령 검색을 수행하고 그 결과를 사용자에게 제시한다. 본 논문에서 제시하고자 하는 방법론을 통해 법령 및 법률용어에 관련된 사전 지식이 없는 일반 사용자도 편리하고 효율적으로 법령을 검색할 수 있는 서비스를 제공할 것으로 기대한다.