• Title/Summary/Keyword: Query Processing Method

Search Result 532, Processing Time 0.023 seconds

An Assignment Method of Multidimensional Type Inheritance Indexes for XML Query Processing (XML 질의처리를 위한 다차원 타입상속 색인구조의 할당기법)

  • Lee, Jong-Hak
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.1
    • /
    • pp.1-15
    • /
    • 2009
  • This paper presents an assignment method of the multidimensional type inheritance indexes (MD-TIXs) to support the processing of XML queries in XML databases. MD-TIX uses a multidimensional index structure for efficiently supporting nested predicates that involve both nested element and type inheritance hierarchies. In this paper, we have analyzed the strategy of the query processing by using the MD-TIXs, and presented an assignment method of the MD-TIXs in the framework of complex queries, containing conjunctions of nested predicates, each one involving an Xpath having target types or domain types substitution. We first consider MD-TIX operations caused by updating of XML data-bases, and the use of the MD-TIXs in the case of a query containing a single nested predicate. And then, we consider the assignments of the MD-TIXs in the framework of more general queries containing nested predicates over overlapping paths that have common subpaths.

  • PDF

An Efficient XML Query Processing Method using Path Containment Relationships (경로 포함 관계를 이용한 효율적인 XML 질의 처리기법)

  • 민경섭;김형주
    • Journal of KIISE:Databases
    • /
    • v.31 no.2
    • /
    • pp.183-194
    • /
    • 2004
  • As XML is a do facto standard for a data exchange language, there have been several researches on efficient processing XML queries. The most important thing to consider when processing XML queries is how efficiently we can process path expressions in queries. Some previous works make results by performing a sequence of join operations on all records corresponding to labels in the path expression. Others works check the existence of paths in the query using an RDBMS's string comparison operator and make results by extracting the records corresponding to the paths. In this paper we suggested a new query planning algorithm based on path containment relationships and two join operators supporting the planning algorithm. The join operators use only the records related to the paths in a query as input data, scan them only once, and generate result data using a pipelining mechanism. By analysis and experiments, we confirmed that our techniques(a new query planning algorithm and two join operators) achieved significantly higher performance than other previous works.

SPARQL Query Processing in Distributed In-Memory System (분산 메모리 시스템에서의 SPARQL 질의 처리)

  • Jagvaral, Batselem;Lee, Wangon;Kim, Kang-Pil;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.42 no.9
    • /
    • pp.1109-1116
    • /
    • 2015
  • In this paper, we propose a query processing approach that uses the Spark functional programming and distributed memory system to solve the computational overhead of SPARQL. In the semantic web, RDF ontology data is produced at large scale, and the main challenge for the semantic web is to query and manipulate such a large ontology with a high throughput. The most existing studies on SPARQL have focused on deploying the Hadoop MapReduce framework, and although approaches based on Hadoop MapReduce have shown promising results, they achieve a low level of throughput due to the underlying distributed file processes. Therefore, in order to speed up the query processes, we suggest query- processing methods that are based on memory caching in distributed memory system. Our approach is also integrated with a clause unification method for propagating between the clauses that exploits Spark join, map and filter methods along with caching. In our experiments, we have achieved a high level of performance relative to other approaches. In particular, our performance was nearly similar to that of Sempala, which has been considered to be the fastest query processing system.

Transformation of Spatial Query Region for Resolving Mismatchs in Distributed Spatial Databases (분산 공간데이타베이스의 위치 불일치 해결을 위한 공간질의영역 변형)

  • 황정래;강혜영;이기준
    • Journal of KIISE:Databases
    • /
    • v.31 no.4
    • /
    • pp.362-372
    • /
    • 2004
  • One of the most difficult problems in building a distributed GIS lies in the heterogeneity of spatial databases. In particular, positional mismatches between spatial databases, which arise due to several reasons, may incur incorrect query results. They result in unreliable outputs of query processing. One simple solution is to correct positional data in spatial databases at each site, according to the most accurate one. This solution is however not practical in cases where the autonomy of each database should be respected. In this paper, we propose a spatial query processing method without correcting positional data in each spatial database. Instead of correcting positional data, we dynamically transform a given query region or position onto each space where spatial objects of each site are located. Our proposed method is based on an elastic transformation method by using delaunay triangulation. Accuracy of this method is proved mathematically, and is confirmed by an experiment. Moreover, we implemented using common use database system for usefulness verification of this method.

An XML Access Control Method through Filtering XPath Expressions (XPath 표현식의 필터링을 통한 XML 접근 제어 기법)

  • Jeon Jae-myeong;Chung Yon Dohn;Kim Myoung Ho;Lee Yoon Joon
    • Journal of KIISE:Databases
    • /
    • v.32 no.2
    • /
    • pp.193-203
    • /
    • 2005
  • XML (extensible Markup Language) is recognized as a standard of data representation and transmission on Internet. XPath is a standard for specifying parts of XML documents anda suitable language for both query processing and access control of XML. In this paper, we use the XPath expression for representing user queries and access control for XML. And we propose an access control method for XML, where we control accesses to XML documents by filtering query XPath expressions through access control XPath expressions. In the proposed method, we directly search XACT (XML Access Control Tree) for a query XPath expression and extract the access-granted parts. The XACT is our proposedstructure, where the edges are structural summary of XML elements and the nodes contain access-control information. We show the query XPath expressions are successfully filtered through the XACT by our proposed method, and also show the performance improvement by comparing the proposed method with the previous work.

Dynamic Load Management Method for Spatial Data Stream Processing on MapReduce Online Frameworks (맵리듀스 온라인 프레임워크에서 공간 데이터 스트림 처리를 위한 동적 부하 관리 기법)

  • Jeong, Weonil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.535-544
    • /
    • 2018
  • As the spread of mobile devices equipped with various sensors and high-quality wireless network communications functionsexpands, the amount of spatio-temporal data generated from mobile devices in various service fields is rapidly increasing. In conventional research into processing a large amount of real-time spatio-temporal streams, it is very difficult to apply a Hadoop-based spatial big data system, designed to be a batch processing platform, to a real-time service for spatio-temporal data streams. This paper extends the MapReduce online framework to support real-time query processing for continuous-input, spatio-temporal data streams, and proposes a load management method to distribute overloads for efficient query processing. The proposed scheme shows a dynamic load balancing method for the nodes based on the inflow rate and the load factor of the input data based on the space partition. Experiments show that it is possible to support efficient query processing by distributing the spatial data stream in the corresponding area to the shared resources when load management in a specific area is required.

The Method to Process Nearest Neighbor Queries Using an Optimal Search Distance (최적탐색거리를 이용한 최근접질의의 처리 방법)

  • Seon, Hwi-Joon;Hwang, Bu-Hyun;Ryu, Keun-Ho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.9
    • /
    • pp.2173-2184
    • /
    • 1997
  • Among spatial queries handled in spatial database systems, nearest neighbor queries to find the nearest spatial object from the given locaion occur frequently. The number of searched nodes in an index must be minimized in order to increase the performance of nearest neighbor queries. An Existing approach considered only the processing of an nearest neighbor query in a two-dimensional search space and could not optimize the number of searched nodes accurately. In this paper, we propose the optimal search distance and prove its properties. The proposed optimal search distance is the measurement of a new search distance for accurately selecting the nodes which will be searched in processing nearest neighbor queries. We present an algorithm for processing the nearest neighbor query by applying the optimal search distance to R-trees and prove that the result of query processing is correcter than the existing approach.

  • PDF

Abstracted Partitioned-Layer Index: A Top-k Query Processing Method Reducing the Number of Random Accesses of the Partitioned-Layer Index (요약된 Partitioned-Layer Index: Partitioned-Layer Index의 임의 접근 횟수를 줄이는 Top-k 질의 처리 방법)

  • Heo, Jun-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.9
    • /
    • pp.1299-1313
    • /
    • 2010
  • Top-k queries return k objects that users most want in the database. The Partitioned-Layer Index (simply, the PL -index) is a representative method for processing the top-k queries efficiently. The PL-index partitions the database into a number of smaller databases, and then, for each partitioned database, constructs a list of sublayers over the partitioned database. Here, the $i^{th}$ sublayer in the partitioned database has the objects that can be the top-i object in the partitioned one. To retrieve top k results, the PL-index merges the sublayer lists depending on the user's query. The PL-index has the advantage of reading a very small number of objects from the database when processing the queries. However, since many random accesses occur in merging the sublayer lists, query performance of the PL-index is not good in environments like disk-based databases. In this paper, we propose the Abstracted Partitioned-Layer Index (simply, the APL-index) that significantly improves the query performance of the PL-index in disk-based environments by reducing the number of random accesses. First, by abstracting each sublayer of the PL -index into a virtual (point) object, we transform the lists of sublayers into those of virtual objects (ie., the APL-index). Then, we virtually process the given query by using the APL-index and, accordingly, predict sublayers that are to be read when actually processing the query. Next, we read the sublayers predicted from each sublayer list at a time. Accordingly, we reduce the number of random accesses that occur in the PL-index. Experimental results using synthetic and real data sets show that our APL-index proposed can significantly reduce the number of random accesses occurring in the PL-index.

Histogram-based Selectivity Estimation Method in Spatio-Temporal Databases (시공간 데이터베이스를 위한 히스토그램 기반 선택도 추정 기법)

  • Lee Jong-Yun;Shin Byoung-Cheol
    • The KIPS Transactions:PartD
    • /
    • v.12D no.1 s.97
    • /
    • pp.43-50
    • /
    • 2005
  • The Processing domains of spatio-temporal databases are divided into time-series databases for moving objects and sequence databases for discrete historical objects. Recently the selectivity estimation techniques for query optimization in spatio-temporal databases have been studied, but focused on query optimization in time-series databases. There wat no previous work on the selectivity estimation techniques for sequence databates as well. Therefore, we construct T-Minskew histogram for query optimization In sequence databases and propose a selectivity estimation method using the T-Minskew histogram. Furthermore we propose an effective histogram maintenance technique for food performance of the histogram.

Formal Representation and Query for Digital Contents Data

  • Khamis, Khamis Abdul-Latif;Song, Huazhu;Zhong, Xian
    • Journal of Information Processing Systems
    • /
    • v.16 no.2
    • /
    • pp.261-276
    • /
    • 2020
  • Digital contents services are one of the topics that have been intensively studied in the media industry, where various semantic and ontology techniques are applied. However, query execution for ontology data is still inefficient, lack of sufficient extensible definitions for node relationships, and there is no specific semantic method fit for media data representation. In order to make the machine understand digital contents (DCs) data well, we analyze DCs data, including static data and dynamic data, and use ontology to specify and classify objects and the events of the particular objects. Then the formal representation method is proposed which not only redefines DCs data based on the technology of OWL/RDF, but is also combined with media segmentation methods. At the same time, to speed up the access mechanism of DCs data stored under the persistent database, an ontology-based DCs query solution is proposed, which uses the specified distance vector associated to a surveillance of semantic label (annotation) to detect and track a moving or static object.