• Title/Summary/Keyword: Query Model

Search Result 563, Processing Time 0.024 seconds

Quality Dimensions Affecting the Effectiveness of a Semantic-Web Search Engine (검색 효과성에 영향을 미치는 시맨틱웹 검색시스템 품질요인에 관한 연구)

  • Han, Dong-Il;Hong, Il-Yoo
    • Asia pacific journal of information systems
    • /
    • v.19 no.1
    • /
    • pp.1-31
    • /
    • 2009
  • This paper empirically examines factors that potentially influence the success of a Web-based semantic search engine. A research model has been proposed that shows the impact of quality-related factors upon the effectiveness of a semantic search engine, based on DeLone and McLean's(2003) information systems success model. An empirical study has been conducted to test hypotheses formulated around the research model, and statistical methods were applied to analyze gathered data and draw conclusions. Implications for academics and practitioners are offered based on the findings of the study. The proposed model includes three quality dimensions of a Web-based semantic search engine-namely, information quality, system quality and service quality. These three dimensions each have measures designed to collectively assess the respective dimension. The model is intended to examine the relationship between measures of these quality dimensions and measures of two dependent constructs, including individuals' net benefit and user satisfaction. Individuals' net benefit was measured by the extent to which the user's information needs were adequately met, whereas user satisfaction was measured by a combination of the perceived satisfaction with search results and the perceived satisfaction with the overall system. A total of 23 hypotheses have been formulated around the model, and a questionnaire survey has been conducted using a functional semantic search website created by KT and Hakia, so as to collect data to validate the model. Copies of a questionnaire form were handed out in person to 160 research associates and employees working in the area of designing and developing semantic search engines. Those who received the form, 148 respondents returned valid responses. The survey form asked respondents to use the given website to answer questions concerning the system. The results of the empirical study have indicated that, of the three quality dimensions, information quality was found to have the strongest association with the effectiveness of a Web-based semantic search engine. This finding is consistent with the observation in the literature that the aspects of the information quality should serve as a basis for evaluating the search outcomes from a semantic search engine. Measures under the information quality dimension that have a positive effect on informational gratification and user satisfaction were found to be recall and currency. Under the system quality dimension, response time and interactivity, were positively related to informational gratification. On the other hand, only one measure under the service quality dimension, reliability was found to have a positive relationship with user satisfaction. The results were based on the seven hypotheses that have been accepted. One may wonder why 15 out of the 23 hypotheses have been rejected and question the theoretical soundness of the model. However, the correlations between independent variables and dependent variables came out to be fairly high. This suggests that the structural equation model yielded results inconsistent with those of coefficient analysis, because the structural equation model intends to examine the relationship among independent variables as well as the relationship between independent variables and dependent variables. The findings offer some useful implications for owners of a semantic search engine, as far as the design and maintenance of the website is concerned. First, the system should be designed to respond to the user's query as fast as possible. Also it should be designed to support the search process by recommending, revising, and choosing a search query, so as to maximize users' interactions with the system. Second, the system should present search results with maximum recall and currency to effectively meet the users' expectations. Third, it should be capable of providing online services in a reliable and trustworthy manner. Finally, effective increase in user satisfaction requires the improvement of quality factors associated with a semantic search engine, which would in turn help increase the informational gratification for users. The proposed model can serve as a useful framework for measuring the success of a Web-based semantic search engine. Applying the search engine success framework to the measurement of search engine effectiveness has the potential to provide an outline of what areas of a semantic search engine needs improvement, in order to better meet information needs of users. Further research will be needed to make this idea a reality.

Design and Implementation of OCR Correction Model for Numeric Digits based on a Context Sensitive and Multiple Streams (제한적 문맥 인식과 다중 스트림을 기반으로 한 숫자 정정 OCR 모델의 설계 및 구현)

  • Shin, Hyun-Kyung
    • The KIPS Transactions:PartD
    • /
    • v.18D no.1
    • /
    • pp.67-80
    • /
    • 2011
  • On an automated business document processing system maintaining financial data, errors on query based retrieval of numbers are critical to overall performance and usability of the system. Automatic spelling correction methods have been emerged and have played important role in development of information retrieval system. However scope of the methods was limited to the symbols, for example alphabetic letter strings, which can be reserved in the form of trainable templates or custom dictionary. On the other hand, numbers, a sequence of digits, are not the objects that can be reserved into a dictionary but a pure markov sequence. In this paper we proposed a new OCR model for spelling correction for numbers using the multiple streams and the context based correction on top of probabilistic information retrieval framework. We implemented the proposed error correction model as a sub-module and integrated into an existing automated invoice document processing system. We also presented the comparative test results that indicated significant enhancement of overall precision of the system by our model.

PC-SAN: Pretraining-Based Contextual Self-Attention Model for Topic Essay Generation

  • Lin, Fuqiang;Ma, Xingkong;Chen, Yaofeng;Zhou, Jiajun;Liu, Bo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3168-3186
    • /
    • 2020
  • Automatic topic essay generation (TEG) is a controllable text generation task that aims to generate informative, diverse, and topic-consistent essays based on multiple topics. To make the generated essays of high quality, a reasonable method should consider both diversity and topic-consistency. Another essential issue is the intrinsic link of the topics, which contributes to making the essays closely surround the semantics of provided topics. However, it remains challenging for TEG to fill the semantic gap between source topic words and target output, and a more powerful model is needed to capture the semantics of given topics. To this end, we propose a pretraining-based contextual self-attention (PC-SAN) model that is built upon the seq2seq framework. For the encoder of our model, we employ a dynamic weight sum of layers from BERT to fully utilize the semantics of topics, which is of great help to fill the gap and improve the quality of the generated essays. In the decoding phase, we also transform the target-side contextual history information into the query layers to alleviate the lack of context in typical self-attention networks (SANs). Experimental results on large-scale paragraph-level Chinese corpora verify that our model is capable of generating diverse, topic-consistent text and essentially makes improvements as compare to strong baselines. Furthermore, extensive analysis validates the effectiveness of contextual embeddings from BERT and contextual history information in SANs.

Characteristic of Data Distribution and Data Replication based Model of LDAP System in High Performance Grid Environments (고성능 Grid 환경에서의 LDAP 시스템의 분산모델과 복제모델의 특성)

  • 권성호;김희철
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.9 no.1
    • /
    • pp.77-84
    • /
    • 2004
  • Recently, as the number of entities participating in the Grid system increased, the response time of LDAP system became inadequate. Consequently, we have to design new LDAP that suitable for high performance Grid environments. For this, researches about analysis of performance LDAP system are needed firstly. However, because researches are focused mostly on read operation optimized environments, so these result of researches are not directly applied to high performance Grid environments that write operation occupies most. In this paper, we provide overall results of analysis of performance of LDAP system with respect to number of node, query arrival rate, probability of read and so on. The analysis is based on in analytic performance model by applying the M/M/1 queuing model. Finally, based on the results, we suggest the direction for the design of high performance LDAP system and this research results can be applied as basic materials to design of GIS in high performance Grid environments as well as.

  • PDF

Query-Efficient Black-Box Adversarial Attack Methods on Face Recognition Model (얼굴 인식 모델에 대한 질의 효율적인 블랙박스 적대적 공격 방법)

  • Seo, Seong-gwan;Son, Baehoon;Yun, Joobeom
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.6
    • /
    • pp.1081-1090
    • /
    • 2022
  • The face recognition model is used for identity recognition of smartphones, providing convenience to many users. As a result, the security review of the DNN model is becoming important, with adversarial attacks present as a well-known vulnerability of the DNN model. Adversarial attacks have evolved to decision-based attack techniques that use only the recognition results of deep learning models to perform attacks. However, existing decision-based attack technique[14] have a problem that requires a large number of queries when generating adversarial examples. In particular, it takes a large number of queries to approximate the gradient. Therefore, in this paper, we propose a method of generating adversarial examples using orthogonal space sampling and dimensionality reduction sampling to avoid wasting queries that are consumed to approximate the gradient of existing decision-based attack technique[14]. Experiments show that our method can reduce the perturbation size of adversarial examples by about 2.4 compared to existing attack technique[14] and increase the attack success rate by 14% compared to existing attack technique[14]. Experimental results demonstrate that the adversarial example generation method proposed in this paper has superior attack performance.

Security Threats to Enterprise Generative AI Systems and Countermeasures (기업 내 생성형 AI 시스템의 보안 위협과 대응 방안)

  • Jong-woan Choi
    • Convergence Security Journal
    • /
    • v.24 no.2
    • /
    • pp.9-17
    • /
    • 2024
  • This paper examines the security threats to enterprise Generative Artificial Intelligence systems and proposes countermeasures. As AI systems handle vast amounts of data to gain a competitive edge, security threats targeting AI systems are rapidly increasing. Since AI security threats have distinct characteristics compared to traditional human-oriented cybersecurity threats, establishing an AI-specific response system is urgent. This study analyzes the importance of AI system security, identifies key threat factors, and suggests technical and managerial countermeasures. Firstly, it proposes strengthening the security of IT infrastructure where AI systems operate and enhancing AI model robustness by utilizing defensive techniques such as adversarial learning and model quantization. Additionally, it presents an AI security system design that detects anomalies in AI query-response processes to identify insider threats. Furthermore, it emphasizes the establishment of change control and audit frameworks to prevent AI model leakage by adopting the cyber kill chain concept. As AI technology evolves rapidly, by focusing on AI model and data security, insider threat detection, and professional workforce development, companies can improve their digital competitiveness through secure and reliable AI utilization.

A Contents-based Drug Image Retrieval System Using Shape Classification and Color Information (모양분류와 컬러정보를 이용한 내용기반 약 영상 검색 시스템)

  • Chun, Jun-Chul;Kim, Dong-Sun
    • Journal of Internet Computing and Services
    • /
    • v.12 no.6
    • /
    • pp.117-128
    • /
    • 2011
  • In this paper, we present a novel approach for contents-based medication image retrieval from a medication image database using the shape classification and color information of the medication. One major problem in developing a contents-based drug image retrieval system is there are too many similar images in shape and color and it makes difficult to identify any specific medication by a single feature of the drug image. To resolve such difficulty in identifying images, we propose a hybrid approach to retrieve a medication image based on shape and color features of the medication. In the first phase of the proposed method we classify the medications by shape of the images. In the second phase, we identify them by color matching between a query image and preclassified images in the first phase. For the shape classification, the shape signature, which is unique shape descriptor of the medication, is extracted from the boundary of the medication. Once images are classified by the shape signature, Hue and Saturation(HS) color model is used to retrieve a most similarly matched medication image from the classified database images with the query image. The proposed system is designed and developed especially for specific population- seniors to browse medication images by using visual information of the medication in a feasible fashion. The experiment shows the proposed automatic image retrieval system is reliable and convenient to identify the medication images.

A Comparative Study of Two Paradigms in Information Retrieval: Centering on Newer Perspectives on Users (정보검색에 있어서 두 패러다임의 비교분석 : 이용자에 대한 새로운 인식을 중심으로)

  • Cho Myung-Dae
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.24
    • /
    • pp.333-369
    • /
    • 1993
  • 정보검색 시스템을 대하는 대부분의 이용자의 대답은 '이용하기에 어렵다'라는 것이다. 기계적인 정보검색을 기본 철학으로 하는 기존의 matching paradigm은 정보 곡체를 여기 저기 내용을 옮길 수 있는 물건으로 간주한다. 그리고 기존의 정보시스템은 이용자가 시스템을 구성한 사람의 의도 (즉, indexing, cataloguing rule)를 완전히 이해한다면, 즉 완전하게 질문식(query)을 작성한다면, 효과적인 검색을 할 수 있는 그런 시스템이다. 그러나 어느 이용자가 그 복잡한 시스템을 이해하고 정보검색을 할 수 있겠는가? 한마디로 시스템을 설계한 사람의 의도로 이용자가 적응해서 검색을 한다는 것은 아주 힘든 일이다. 그러나 우리가 이용자에 대한 인식을 다시 한다면 보다 나은 시스템을 만들 수 있다고 본다. 우리 인간은 아주 창조적이어서 자기가 처한 상황에서 이치에 맞게끔 자기 나름대로의 행동을 할 수 있다(sense-making approach). 이 사실을 인식한다면, 왜 이용자들의 행동양식에 시스템 설계자가 적응을 못하는 것인가? 하고 의문을 던질 수 있다. 앞으로의 시스템이 이용자들의 자연스러운 행동 패턴에 맞게 끔 설계된다면 기존의 시스템과 함께 쉽게 이용할 수 있는 편리한 시스템이 설계될 수 있을 것이다. 그러므로 도서관 및 정보학 연구에 있어서 기존의 분류. 목록에 대한 연구와 이용자체에 대한연구(예를 들면, 몇 시에 이용자가 많은가? 어떤 종류의 책을 어떤 계충에서 많이 보는가? 도서 및 잡지가 어떻게 양적으로 성장해 왔는가? 등등의 use study)와 함께 여기서 제시한 제3의 요소인 이용자의 인식(cognition)을 시스템설계에 반드시 도입을 해야만 한다고 본다(user-centric approach). 즉 이용자를 중간 중간에서 도울 수 있는 facilitator가 많이 제공되어야 한다. 이용자의 다양한 패턴의 정보요구(information needs)에 부응할 수 있고, 질문식(query)을 잘 만들 수 없는 이용자를 도울 수 있고(ASK hypothesis: Anomolous State of Knowledge), 어떤 질문식 없이도 자유스럽게 Browsing할 수 있는(예를 들면 hypertext) 시스템을 설계하기 위해서는 눈에 보이는 이용자의 행동패턴(external behavior)도 중요하지만 우리 눈에는 보이지 않는 이용자의 심리상태를 이해한다면 훨씬 나은 시스템을 만들 수 있다. 이용자가 '왜?' '어떤 상황에서,' '어떤 목적으로,' '어떻게,' 정보를 검색하는지에 대해서 새로운 관심을 들려서 이용자들이 얼마나 우리 시스템 설계자들의 의도에 미치지 못한다는 사실을 인식 해야한다. 이 분야의 연구를 위해서는 새로운 paradigm이 필수적으로 필요하다고 본다. 단지 'user-study'만으로는 부족하며 새로운 시각으로 이용자를 연구해야 한다. 가령 새롭게 설치된 computer-assisted system에서 이용자들이 어떻게, 그리핀 어떤 분야에서 왜 그렇게 오류 (error)를 범하는지 분석한다면 앞으로의 computer 시스템 선계에 큰 도움을 줄 수 있을 것으로 믿는다. 실제로 많은 방법이 개발되고 있다. 그러면 시스템 설계자가 가졌던 이용자들이 이러 이러한 방식으로 정보검색을 할 것이라는 예측과(즉, conceptual model) 실제 이용자들이 정보검색을 할 때 일어나는 행동패턴 사이에는(즉, mental model) 상당한 차이점이 있다는 것을 알게 될 것이다. 이 차이점을 줄이는 것이 시스템 설계자의 의무라고 생각한다. 결론적으로, Computer에 대한 새로운 지식과 함께 이용자들의 인식을 연구할 수 있는, 철학적이고 방법론적인 연구를 계속하나가면서, 이용자들의 행동패턴을 어떻게 시스템 설계에 적용할 수 있는 지를 연구해야 한다. 중요하게 인식해야할 사실은 구 Paradigm을 완전히 무시하라는 것은 아니고 단지 이용자에 대한 새로운 인식을 추가하자는 것이다. 그것이 진정한 User Study가 될 수 있는 길이라고 생각하며, 컴퓨터와 이용자 사이의 '원활한 의사교환'이 필수불가결 한 지금 우리 학문이 가야 할 한 연구분야이다. (Human Interaction with Computers)

  • PDF

A Term Cluster Query Expansion Model Based on Classification Information of Retrieval Documents (검색 문서의 분류 정보에 기반한 용어 클러스터 질의 확장 모델)

  • Kang, Hyun-Su;Kang, Hyun-Kyu;Park, Se-Young;Lee, Yong-Seok
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.7-12
    • /
    • 1999
  • 정보 검색 시스템은 사용자 질의의 키워드들과 문서들의 유사성(similarity)을 기준으로 관련 문서들을 순서화하여 사용자에게 제공한다. 그렇지만 인터넷 검색에 사용되는 질의는 일반적으로 짧기 때문에 보다 유용한 질의를 만들고자 하는 노력이 지금까지 계속되고 있다. 그러나 키워드에 포함된 정보가 제한적이기 때문에 이에 대한 보완책으로 사용자의 적합성 피드백을 이용하는 방법을 널리 사용하고 있다. 본 논문에서는 일반적인 적합성 피드백의 가장 큰 단점인 빈번한 사용자 참여는 지양하고, 시스템에 기반한 적합성 피드백에서 배제한 사용자 참여를 유도하는 검색 문서의 분류 정보에 기반한 용어 클러스터 질의 확장 모델(Term Cluster Query Expansion Model)을 제안한다. 이 방법은 검색 시스템에 의해 검색된 상위 n개의 문서에 대하여 분류기를 이용하여 각각의 문서에 분류 정보를 부여하고, 문서에 부여된 분류 정보를 이용하여 분류 정보의 수(m)만큼으로 문서들을 그룹을 짓는다. 적합성 피드백 알고리즘을 이용하여 m개의 그룹으로부터 각각의 용어 클러스터(Term Cluster)를 생성한다. 이 클러스터가 사용자에게 문서 대신에 피드백의 자료로 제공된다. 실험 결과, 적합성 알고리즘 중 Rocchio방법을 이용할 때 초기 질의보다 나은 성능을 보였지만, 다른 연구에서 보여준 성능 향상은 나타내지 못했다. 그 이유는 분류기의 오류와 문서의 특성상 한 영역으로 규정짓기 어려운 문서가 존재하기 때문이다. 그러나 검색하고자 하는 사용자의 관심 분야나 찾고자 하는 성향이 다르더라도 시스템에 종속되지 않고 유연하게 대처하며 검색 성능(retrieval effectiveness)을 향상시킬 수 있다.사용되고 있어 적응에 문제점을 가지기도 하였다. 본 연구에서는 그 동안 계속되어 온 한글과 한잔의 사용에 관한 논쟁을 언어심리학적인 연구 방법을 통해 조사하였다. 즉, 글을 읽는 속도, 글의 의미를 얼마나 정확하게 이해했는지, 어느 것이 더 기억에 오래 남는지를 측정하여 어느 쪽의 입장이 옮은 지를 판단하는 것이다. 실험 결과는 문장을 읽는 시간에서는 한글 전용문인 경우에 월등히 빨랐다. 그러나. 내용에 대한 기억 검사에서는 국한 혼용 조건에서 더 우수하였다. 반면에, 이해력 검사에서는 천장 효과(Ceiling effect)로 두 조건간에 차이가 없었다. 따라서, 본 실험 결과에 따르면, 글의 읽기 속도가 중요한 문서에서는 한글 전용이 좋은 반면에 글의 내용 기억이 강조되는 경우에는 한자를 혼용하는 것이 더 효율적이다.이 높은 활성을 보였다. 7. 이상을 종합하여 볼 때 고구마 끝순에는 페놀화합물이 다량 함유되어 있어 높은 항산화 활성을 가지며, 아질산염소거능 및 ACE저해활성과 같은 생리적 효과도 높아 기능성 채소로 이용하기에 충분한 가치가 있다고 판단된다.등의 관련 질환의 예방, 치료용 의약품 개발과 기능성 식품에 효과적으로 이용될 수 있음을 시사한다.tall fescue 23%, Kentucky bluegrass 6%, perennial ryegrass 8%) 및 white clover 23%를 유지하였다. 이상의 결과를 종합할 때, 초종과 파종비율에 따른 혼파초지의 건물수량과 사료가치의 차이를 확인할 수 있었으며, 레드 클로버 + 혼파 초지가 건물수량과 사료가치를 높이는데 효과적이었다.\ell}$ 이었으며 , yeast extract 첨가(添加)하여 배양시(培養時)는 yeast extract

  • PDF

Spatio-Temporal Semantic Sensor Web based on SSNO (SSNO 기반 시공간 시맨틱 센서 웹)

  • Shin, In-Su;Kim, Su-Jeong;Kim, Jeong-Joon;Han, Ki-Joon
    • Spatial Information Research
    • /
    • v.22 no.5
    • /
    • pp.9-18
    • /
    • 2014
  • According to the recent development of the ubiquitous computing environment, the use of spatio-temporal data from sensors with GPS is increasing, and studies on the Semantic Sensor Web using spatio-temporal data for providing different kinds of services are being actively conducted. Especially, the W3C developed the SSNO(Semantic Sensor Network Ontology) which uses sensor-related standards such as the SWE(Sensor Web Enablement) of OGC and defines classes and properties for expressing sensor data. Since these studies are available for the query processing about non-spatio-temporal sensor data, it is hard to apply them to spatio-temporal sensor data processing which uses spatio-temporal data types and operators. Therefore, in this paper, we developed the SWE based on SSNO which supports the spatio-temporal sensor data types and operators expanding spatial data types and operators in "OpenGIS Simple Feature Specification for SQL" by OGC. The system receives SensorML(Sensor Model Language) and O&M (Observations and Measurements) Schema and converts the data into SSNO. It also performs the efficient query processing which supports spatio-temporal operators and reasoning rules. In addition, we have proved that this system can be utilized for the web service by applying it to a virtual scenario.