
제한적 문맥 인식과 다중 스트림을 기반으로 한 숫자 정정 OCR 모델의 설계 및 구현 67

제한적 문맥 인식과 다중 스트림을 기반으로 한 숫자 정정

OCR 모델의 설계 및 구현

신 현 경
†

요 약

재무 데이터 관리를 위한 자동화된 비지니스 서류 영상 처리 시스템에서 숫자 정보 검색 중 발생한 오류는 심각하여 그 시스템의 가용성

및 성능을 결정한다. 그 동안 자동 맞춤법 교정에 관한 방법론들이 개발되어 정보 검색 시스템 개발에 중요한 역할을 해왔으나 이러한 맞춤법

교정은 알파벳 등 기계학습이 가능하고 사전 형태로 보관이 가능한 기호에 한정되어왔다. 반면에 순수한 마코프 수열에 불과한 숫자들의 순열

들은 맞춤법 교정을 위하여 사전적 형태로 보관하여 활용하는 것이 불가능 하다. 본 논문에서는 확률론적 정보 검색 알고리즘의 토대위에 제한

적 문맥 인식과 복수의 스트림을 적용한 새로운 형태의 숫자 정정 OCR 모델을 제안하였다.

본 논문에서 제안된 숫자 정정 모델은 기존의 송장 문서 처리 시스템에 구현하였으며 제안된 숫자 정정 모델의 효과를 확인하기 위해 비교

테스트를 실행하였고 테스트 결과 상당한 성능이 개선되었음을 보여 주었다.

키워드 : 정보 검색, 스펠링 정정 모델, 제한적 문맥 인식 기반 교정, 자동 문서 처리 시스템, 문자 인식, 자연어 프로세싱

Design and Implementation of OCR Correction Model for Numeric Digits

based on a Context Sensitive and Multiple Streams

 Shin Hyun Kyung†

ABSTRACT

On an automated business document processing system maintaining financial data, errors on query based retrieval of numbers are

critical to overall performance and usability of the system. Automatic spelling correction methods have been emerged and have played

important role in development of information retrieval system. However scope of the methods was limited to the symbols, for example

alphabetic letter strings, which can be reserved in the form of trainable templates or custom dictionary. On the other hand, numbers, a

sequence of digits, are not the objects that can be reserved into a dictionary but a pure markov sequence. In this paper we proposed a

new OCR model for spelling correction for numbers using the multiple streams and the context based correction on top of probabilistic

information retrieval framework.

We implemented the proposed error correction model as a sub-module and integrated into an existing automated invoice document

processing system. We also presented the comparative test results that indicated significant enhancement of overall precision of the system

by our model.

Keywords : Information Retrieval, Spelling Correction Model, Context Sensitive Correction, Automated Document Processing

 System, OCR, Natural Language Processing

1. Introduction6)

※ 본 연구는 2010년 경원대학교 교내 연구비 지원을 받아 시행된 연구임.
†종신회원:경원대학교 수학정보학과 조교수
 논문접수: 2010년 9월 10일
 수 정 일 : 1차 2010년 10월 25일
 심사완료: 2010년 10월 25일

An automated business document processing system,

founded on variety of information retrieval techniques,

performs query and correction procedures on the

alphabetic texts and the numeric digits read from input

document. In case that the inputs are semi-structured

documents having internal XML-type format, the typical

query functions employed in a desktop or a web

DOI: 10.3745/KIPSTD.2011.18D.1.067

68 정보처리학회논문지 D 제18-D권 제1호(2011. 2)

application can acquire texts and numbers by exploring

the pre-defined relational data structure [1], which implies

no acquisition errors and low parse errors. However, in

case that the inputs are the un-structured documents

such as a collection of the texts obtained from a scanned

image by an OCR engine, acquisition errors are so

significant that data acquirement module should include

an auto-validation function to correct input errors.

The conventional information retrieval techniques are

designed on the structured text data [2]. The same

techniques cannot be delineated effectively to the

unstructured data obtained from the scanned document

image by OCR. Some examples of the automated

document system taking scanned documents as its input

are invoice parsing [3], query on legal or medical

documents [4-6], digital video surveillance system [7] for

reading vehicle license plate, and etc.

In order for the conventional information retrieval

techniques to be extended to domain of unstructured

documents, two major pre-processings are pre-requisite.

1) Layout analysis that converts to a structured

document. Appropriate conversion of the raw OCR texts

into a structured data format provides the unit documents

with well defined relation so that the standard query

techniques can be applied effectively. 2) Correction of

errors that occurred from input texts. As a formatted

data in an archive for query system, a structured

document has no text errors, while an un-structured

document usually suffers from errors in texts due to OCR

from reading the scanned image. This involves that, prior

to transferring an unstructured document into an archive,

text error correction is indispensable.

OCR text errors can be classified into the two classes:

errors to the alphabetic and the numeric texts. The error

in alphabetic word can be resolved by a spelling

correction typically using a dictionary matching, on the

other hand the error in numeric texts has no standard

solution. In this paper we addressed the problems of error

correction occurring in the query for numbers. We

proposed a correction model based on using the multiple

text streams and using the contexts in the form of a

relational formula.

This paper organizes as follows: in section 2 related

previous research works are presented, in section 3

theoretical and implementation details for our model are

introduced, in section 4 test procedure and experimental

results are presented, and in section 5 some discussions

on our model are described.

2. Related Works

In this section the previous research works related to

layout analysis for conversion to semi-structured format

from un-structured document and text error corrections

are described.

Layout analysis on the documents, one of the hardest

problems in the area of document segmentation, has been

considered as a useful technique for improvement OCR

related performance. For robust recognition, Rasagna et al.

used the word clustering method by locality sensitive

hashing and presented significant improvement [8]. Li at el.

proposed a categorization with electronic abstracts method

specialized for the case of biomedical document [9].

Correction of OCR errors has been studied by many

researchers using variety of methods. A brief summary is

as follows. Xu and Nagy employed a prototype extraction

method based on a tolerance correction [10], which was

considered to maintain OCR accuracy with decreasing

quality of document. AviItzhak et al. adopted the neural

networks with centroid-dithering training on the various

font types [11]. Drira et al. proposed an an-isotropic

diffusion model, PDE based OCR recovery model [12].

Garain et al. suggested a pairwise discrimination principle

adopted from artificial immune system. They employed

support vector machine framework for implementation

[13]. Jain et al., applied independent component analysis

method on the un-calibrated camera-based image [14]

and showed significant improvement on OCR recognition.

On the other hand, Koga et al. proposed discriminant

feature extraction followed by dictionary word matching

[15], which also showed significant improvement. Shin et

al. adopted a super-resolution method as an image

restoration from a single image for a biometric technique

of iris recognition [16].

An OCR engine converts the scanned documents to text

data with hierarchical structure such as character, word,

line, and paragraph. Due to the low precision of lines and

paragraphs from OCR engine, the hierarchical structure is

not useful in practical problems however the accuracy of

word level structure is high enough to be used. In

development of a query system on scanned document, OCR

error is the source of error propagating from the earliest

stage. Accurate text error correction methods upgrade the

precision of information retrieval process.

An automated invoice parsing system takes scanned

invoice documents as input and parses the contents such

제한적 문맥 인식과 다중 스트림을 기반으로 한 숫자 정정 OCR 모델의 설계 및 구현 69

as purchase order, invoice date, vender name, and details

of product items as well. The performance of the system

depends on the precision of several factors such as

detection of region of interest, field parsing rule, and OCR

accuracy. For the study of this paper, let’s focus on the

case of OCR error. In case OCR errors occurred to

alphabetical texts, the system adopts the standard spelling

correction rules while in case OCR errors occurred to

numeric digits, the system ignores and overrides with the

reasonable value. In this paper we proposed a method to

correct errors on the numeric digits.

3. Query and Correction Model

The proposed correction method consisted of the

following three approaches:

1. use of multiple text streams by generation of the

multiple pre-processed images,

2. use of baysian voting scheme,

3. use of context sensitive error correction.

Each of these approaches is explained throughout this

section.

3.1 Use of Multiple Text Streams

The idea of using multiple streams was stemmed from

an effort to recover from OCR errors by means of

yielding the multiple text data by different processes.

Refer to [17], in which multiple images taken from the

different angles were used, for the case of video streams.

For example, the texts with dotted font type tend to

cause OCR error that can be easily fixed by gaussian

smoothing and the texts within half-toning region can be

recognized more accurately by low resolution conversion.

 (Fig. 1) Schematic diagram for conversion from a document

image to a text stream

A schematic diagram of the procedure is shown in

(Fig. 1). This procedure is in two stages: create the

multiple text streams; merge the multiple text streams

into a single stream with multiple texts.

3.2 Construction of Multiple Text Streams

In order for a given scanned document to create

multiple image streams we applied the edge conversion

[IMG2], the gaussian smoothing [IMG3], and the low

resolution conversion [IMG4]. Four text streams were

obtained as the outputs from an OCR engine fed by the

three of pre-processed images and the original image

[IMG1]. For the study of this paper, we set the

configuration of OCR engine to produce the texts with

unit of word not with unit of character. As the result,

the text stream 1 contains the list of text words from

IMG1, the text stream 2 from IMG2, the text stream 3

from IMG3, and the text stream4 from IMG4. The word

instances in the separate streams were to be grouped in

terms of the bounding boxes, which is explained as

below.

3.3 Conversion of Multiple Text Streams into Single Stream

 with Multiple Text Instances

(Fig. 2) Bounding box with multiple OCR words

(Fig. 2) shows a cropped region of a scanned

document with the embedded OCR texts. The text words

“Ship” and “To:” were recognized by OCR engine

successfully for all four IMG1, 2, 3, and 4. For example,

on top of the green bounding box surrounding “Ship”, the

four texts were embedded: each of different colored texts

indicates IMG1, 2, 3, and 4 from top to bottom,

respectively. In general bounding box of a text in a

stream supposedly has a matched box in the other

stream. An exception can happen when a text cannot be

recognized in a stream while it can be recognized in

other streams, e.g. texts in heavily textured background

can be read only for the pre-processed image with

low-resolution conversion.

70 정보처리학회논문지 D 제18-D권 제1호(2011. 2)

(Fig. 3) OCR texts in heavily textured background

(Fig. 4) Fragmentation of the bounding boxes

For example as seen in (Fig. 3) the texts

“EXTENDED” and “AMOUNT” were recognized from

two (IMG3 and IMG4) and one image stream (IMG4),

respectively. Another problem is that a single box can be

matched with the multiple subsets of the box, e.g., as can

be seen in ((Fig. 4) a text ‘233.00’ in the image can be

modified to ‘233 00’ (the dot ‘.’ was removed by a

pre-processing) which results in the two bounding boxes

covering ‘233’ and ‘00’. In order to resolve this problem

we used a rule based on the union of bounding boxes:

pick a bounding box of the stream 1, search the

intersecting bounding boxes in stream 2, 3, 4. Take the

union of those collected bounding boxes. This bounding

box replaces the original one. Pick a next bounding box

of the stream 1 and continue the same process for

searching boxes in other streams. Once the matching

process completed, the connected components of the new

bounding boxes in stream 1 are the bounding boxes for

texts. This resulting bounding box was used to align the

texts in the streams into the single stream in which the

bounding box contains the four (or less) instances of

texts. Our assumption is that the probability of having a

true (correct) text among the four candidate texts is

higher than that of having correct text from a single

stream.

(Fig. 5) Visualization: a single stream with the multiple words

An example of ‘single text stream with multiple words’

is visualized in (Fig. 5) As seen in the (Fig. 5) a numeric

digit word ’20.14’ was recognized as ’10.1L1’, ’20.1Q>’,

’20.14’, and ’20.14’ according to processing method,

respectively.

3.4 Method of Classification of Text Words into the Two

 Groups

The text words in a document were grouped into the

two classes: 1) alphabetics [class-A] and 2) numerical

digits [class-D]. For the classification we defined a

predicator function [pred-F] which counts the number of

digits in a word. If the number of numerical digits in a

word was greater than the number of non-digits then the

word was moved into the class-D otherwise into class-A.

For the case of class-A, one of the standard methods

of error correction called “dictionary matching” was used.

For a given bounding box, if one of the words was

included in a look-up dictionary then the word was

selected as the corrected word. On the other hand, for the

case of class-D, a dictionary instance is not even feasible

since any sequence of digits can be meaningful. For

resolution of this problem, as the main subject of this

paper, a new recovery model designed for correction of

the OCR errors occurred to the numeric digits is

proposed. (Fig. 6) is an overview of the digit correction

model.

A general and brief description of the diagram is as

follows: suppose a set of numbers, {n1, n2, n3, n4} was

an input to the DataAcquisitionInterface of this model.

DigitRepresentation function made the input numbers split

into the ASCII digits. DeterminRepresentationLength

function set a number, k, by applying MajorityVoting

module. Once the value k is set, for each digit

representation of the input numbers, say n1,

BuildPostingsList function created a list of postings-list

of digits of size k. ‘PLk_n1’ indicates the positings list of

n1 of size k. In order to utilize weight scoring method, a

weight matrix S[4][.] was allocated. The value S[i][j]

corresponds to the score of an element in PLk_ni[j].

WeightScoringPostingsList function evaluated the score

values by using MajorityVoting method to build the

matrixS[4][.]. From the weight matrix S[4][.], the

selection of the best index (or an element in postings list)

is straightforward by ArgMax. The output of

SelectionTheBestIndex function is the corrected text of

the input texts. In this paper, we applied

제한적 문맥 인식과 다중 스트림을 기반으로 한 숫자 정정 OCR 모델의 설계 및 구현 71

(Fig. 6) The proposed error correction model for the numeric digit texts

ContextSensitiveCorrection if a formula can be considered.

The more detailed explanations with the implementation

codes of the methods are described as below in this

section.

For the rest of this section we presented the

implementation details of each module consisting of our

error correction model: a string acquisition (Data

AcquisitionInterface), a tokenization of number (Digit

Representation), an algorithm for determination of the

output string length (DeterminRepresentationLength), an

algorithm for determination of floating point position

(DetermineDotPosition), an algorithm to build a postings

list of the input numbers (BuildPositinsList), an algorithm

to build weight scoring matrix (WeightScoringPostings

List), an algorithm to deal with the multiple selection

(SelectionTheBestIndex), and an algorithm to be used for

context based correction (ContextSensity Correction).

We started with describing MajorityVoting (Plurality

Voting) since it served as the basic module to the others.

Followingly, we presented the modules in sequential

order.

3.5 Plurality Voting

As seen in (Fig. 6) the digit correction model was

based on a voting scheme, denoted as MajorityVoting of

which implementation was described in <Algorithm 1>. In

the algorithm, for the convenience of presentation, we

used a fixed sized vector (size of 4) as an input. But the

algorithm can be applied to the vectors with any size.

Implementation details of the MajorityVoting is as

follows: suppose the four ascii strings were input

arguments, s[4] = {s[1], s[2], s[3], s[4]}.In order to utilize a

voting scheme, a weight vector, w[4] = {w[1], w[2], w[3],

w[4]}, was defined and initialized as zero vector, as seen

in LINE1. From LINE2 to LINE7 the weight vector was

estimated as follows: The value of w[1] was increased by

1 when s[1] was matched with s[2], LINE2, and repeated

the same process for s[3] and s[4], LINE3 and LINE4. The

value of w[2] was increased by 1 if s[2] was matched

with s[3], LINE5, and repeat the same process for s[4],

LINE6. The value of w[3] is increased by 1 if s[3] is

matched with s[4], LINE7. At LINE8 the index of the

maximum weight was selected by a simple arg-max

method. The arg‐max method had problem when w[4]

has the multiple maximums–there are three cases:

case 1) when each s[k] is unique;

case 2) when s[1]=s[2] and s[3]=s[4];

case 3) s[1]=s[3] and s[2]=s[4].

72 정보처리학회논문지 D 제18-D권 제1호(2011. 2)

 <Algorithm 1> Majority voting algorithm for the fixed size input vector

MajorityVoting(s[4], conf) // AGR: four numeric digits and confidence level

1 float w[4] = {0} // define and initialize weights

2 if (s[1] == s[2]) w[1] += 1 // estimates the weights LINE2-LINE7

3 if (s[1] == s[3]) w[1] += 1

4 if (s[1] == s[4]) w[1] += 1

5 if (s[2] == s[3]) w[2] += 1

6 if (s[2] == s[4]) w[2] += 1

7 if (s[3] == s[4]) w[3] += 1

8 int index = arg max{w[1], w[2], w[3], w[4] // arg max to select the best index

9 conf = w[index] / 4 // evaluate the confidence level

10 return s[index]

DeterminRepresentationLength(m1, m2, m3, m4)

1 int k1 = length of the representation of number m1

2 int k2 = length of the representation of number m2

3 int k3 = length of the representation of number m3

4 int k4 = length of the representation of number m4

5 return MajorityVoting(k1, k2, k3, k4)

In this paper we selected s[1] if the multiple maximum

case occurs. LINE9 shows the way of evaluation of

confidence level for the selection.

The MajorityVoting algorithm introduced above is

data-type independent, e.g., it is applicable to the

numbers, the ascii characters, the sequence of ascii

characters, the strings, and the abstract data types.

3.6 Data Acquisition Interface

One of the functionalities of DataAcquisitionInterface is

to filter out the non-digit inputs. For the non-numeric

texts, we employed the dictionary matching method

separately. The other functionality is to check whether all

the inputs are same. If the inputs are all the same, there

is no need to invoke the correction process.

3.7 Digit Representation

For the study of numeric digit correction we explored

digit-by-digit representation of a number and applied the

correction method on each digit in the representation.

Algorithm 2 explained how a number was converted to

its representation form. A number is a sequence consisted

of the digits, the dot (‘.’), the comma (‘,’), and some

pre-fixes ‘$’, ‘+’, and ‘-‘, e.g., n = n1 n2 n3 … nk where

nj is one of {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} or ‘,’, or ‘.’. For a

special case, n1 can be ‘$’, ‘+’, ‘-‘. In this paper we

assumed that we could differentiate the digits from the

comma, the dot, and the other pre-fix signs so that a

representation of number could be a collection of the pure

digits. It should be mentioned that in some pathological

cases, ‘$’ can be confused with ‘5’ or ‘8’.

3.8 Determination of Representation Length

Suppose we have a set of the four numbers, {m1, m2,

m3, m4}, with digit representations as follow:

m1 := {m11, m12, … , m1k1}

m2 := {m21, m22, … , m2k2}

m3 := {m31, m32, … , m3k3}

m4 := {m41, m42, … , m4k4}

Notice that the lengths of representations can be

various. We used the majority voting algorithm described

above to determine the length of the resulting number as

seen in <Algorithm 2>.

<Algorithm 2> determination of length of representation

3.9 Determination of Dot Position

If inputs were floating point numbers, e.g., {123.45,

128.45, 123.95, 12345}, as explained in the section

[DigitRepresentation], they were extracted into the

sequence of pure digits. In our method, the positions of

dot were treated independently. Dot position was the

count from the right end of text. For example, in ‘123.45’

the dot position is defined as 2. The method of

determining the dot position is similar to Determin

RespresentationLength using the MajorityVoting.

제한적 문맥 인식과 다중 스트림을 기반으로 한 숫자 정정 OCR 모델의 설계 및 구현 73

<Algorithm 3> build postings list of digit representation

BuildPostingsList(n, PL[1], …, PL[k])

1 PoLi_n1 := {n1}-{n1, n2}-{n1, n2, n3}- … -{n1, n2, …, nk}. // build postings list

2 PoLi_n2 := {n2}-{n2, n3}-{n2, n3, n4}- … -{n2, n3, …, nk}. // build postings list

3 …

4 PoLi_nk := {nk}. // build postings list

5 PL[1] := set of sequence of k-gram digit with length 1: {{n1} {n2 }{n3}… }

6 PL[2] := set of sequence of k-gram digit with length 2: {{n1, n2}{n2, n3}…}

7 …

8 PL[k] := set of sequence of k-gram digit with length k {{n1, n2, …, nk}}

3.10 Build Postings List

Suppose we determined the length of resulting number

from [DeterminRepresentationLength], say ‘n’. Following

the original definition of postings list, any order-

preserving subsequence of digit up to a length ‘n’ should

be included in the postings list. For example, ‘123.45’ with

n =5, the postings list would be constructed from a

collection of {1}, {2}, {3}, {4}, {5}, {12}, {23}, …., {12345}.

We categorized by the starting digit: PoLi1:= {1}{12}

{123}{1234}{12345}, PoLi2 := {2}{23}{234}{2345},

…, PoLi5 := {5}. Using the PoLi set, we further defined

PL set which is k-gram of PoLi’s. As seen in

<Algorithm 3> below, PL[j] is the set of sequence of

k-gram with length ‘j’. This set of PL’s will be used as

the argument of PostingsListWeightScoring function to

determine the error corrected output.

3.11 Postings List Weight Scoring Scheme

Suppose the length of representation was determined,

say k. Among all the postings lists of a number

generated by BuildPostingsList, we elected the posting

lists of size k, e.g., PL[k]. For each of the four input

numbers, {m1, m2, m3, m4}, we picked the corresponding

postings list. For the convenience of notation, let us

denote the selected postings lists as follows:

m1PL := PL[k] obtained from BuildPostingsList (m1,

 PL[1], …., PL[k1])

m2PL := PL[k] obtained from BuildPostingsList (m2,

 PL[1], …., PL[k2])

m3PL := PL[k] obtained from BuildPostingsList (m3,

 PL[1], …., PL[k3])

m4PL := PL[k] obtained from BuildPostingsList (m4,

 PL[1], …., PL[k4])

Our assumption was that the digit representation of

true solution (the error corrected digit text) occurred

frequently among the set m1PL, m2PL, m3PL, and m4PL.

As an example, suppose ‘123.45’ is the true value and an

OCR engine returned ‘128.45”, “123.45”, “$123.5”, “812345”

from each stream, respectively. We can observe high

frequency of the digits ‘1’ at the first or second position

in the representation, ‘2’ at the second or third position,

and so on. In the example, m1PL = {12845}, m2PL =

{12345}, m3PL = {}, m4PL = {{81234}, {12345}}.

PostingsListWeightScoring function assigns a weight

value in the form of a scoring matrix. The scoring

matrix is an array of scoring vector for each stream. For

example, a scoring vector S1 is for a postings list m1PL

(S2 for m2PL, S3 for m3PL, and S4 for m4PL). The size

of scoring vector S1 is the same with that of postings

list. As an efficient way of constructing the scoring

matrix, we used the index tree instances. An index tree

of postings list is in form of {i1, i2, i3, i4}, where ‘i1’

indicates ‘i1’-th element in m1PL, ‘i2’-th element in

m2PL, ‘i3’-th element in m3PL, and ‘i4’-th element in

m4PL. Once a set of the index tree is constructed, the

score is evaluated by using MajorityVoting as the

following way: for an element in the postings list of the

first stream, m1PL[i1], the score will be 1 if mPL[i1] =

MajorityVoting(m1PL[i1], m2PL[i2], m3PL[i3], m4PL[i4]),

otherwise 0. In other words, the weight score is the

probability of being the k-gram in majority population.

After completion of building weighted scoring matrix,

process of selection of the best index tree was performed

by a simple ArgMax method. If [k, j] is the best

selection, then j-th k-gram of k-th stream is the

corrected text.

For the presentation of building a scoring matrix with

74 정보처리학회논문지 D 제18-D권 제1호(2011. 2)

<Algorithm 4> scoring algorithm for numerical digit representation

PostingsListWeightScoring(m1PL, m2PL, m3PL, m4PL)

 1 int x = max{m1PL.length, m2PL.length, m3PL.length, m4PL.length}

 2 float scoreM[4][x] = {0}

 3 postingsList p1 = m1PL[0] // pointer to the head of m1PL

 4 postingsList p2 = m2PL[0] // pointer to the head of m2PL

 5 postingsList p3 = m3PL[0] // pointer to the head of m3PL

 6 postingsList p4 = m4PL[0] // pointer to the head of m4PL

 7 while p1 is not null, i1++ // index tree selection process

 8 p2 = m2PL[0]

 9 while p2 is not null, i2++

10 p3 = m3PL[0]

11 while p3 is not null, i3++

12 p4 = m4PL[0]

13 while p4 is not null, i4++

 // index tree: {i1, i2, i3, i4}

14 scoreM[0][i1] += (p1 == MajorityVoting(p1, p2, p3, p4, conf)) ? conf : 0

15 scoreM[1][i2] += (p2 == MajorityVoting(p1, p2, p3, p4, conf)) ? conf : 0

16 scoreM[2][i3] += (p3 == MajorityVoting(p1, p2, p3, p4, conf)) ? conf : 0

17 scoreM[3][i4] += (p4 == MajorityVoting(p1, p2, p3, p4, conf)) ? conf : 0

18 p4 = p4.next

19 end while

20 p3 = p3.next

21 end while

22 p2 = p2.next

23 end while

24 p1 = p1.next

25 end while

26 [int, int] [k,j] = arg max{scoreM[0][0], …, scoreM[4][x]} // selection of the best index tree

27 return mkPL[j]

the example given above, denote scoreM to be a score

matrix. The construction process is the following:

Set of index tree is {1, 1, -1, 1}, {1, 1, -1, 2}, where

-1 indicates the empty case.

For case {1, 1, -1, 1}:

“12845” = MajorityVoting(m1PL[1], m2PL[1],

 m3PL[-1], m4PL[1], conf)

 ScoreM[1][1] += conf, where conf = 0.33.

 ScoreM[2][1] += 0

 ScoreM[4][1] += 0

For case {1, 1, -1, 2}:

“12345” = MajorityVoting(m1PL[1], m2PL[1],

 m3PL[-1], m4PL[2], conf)

 ScoreM[1][1] += 0

 ScoreM[2][1] += conf

 ScoreM[4][2] += conf, where conf = 0.66.

As the result of this process we can see that the

output of PostingsListWeightScoring is “12345”. A pseudo

code implementation of this process is summarized in

<Algorithm 4>.

3.12 Context Sensitive Correction Scheme

We have introduced a modeling method for correction

of OCR error occurred to the digits. In this section we

further discussed on a context sensitive correction model

for the case of available relational data structure. Suppose

we have a relational formula among a set of three

numbers, {n1, n2, n3}, e.g., n1 = n2 * n3. We created a

context sensitive correction model if the three numbers

failed to satisfy the formula relation. Our assumption on

this model here was that only one of the numbers among

the three was allowed to be wrong. Once we found out

제한적 문맥 인식과 다중 스트림을 기반으로 한 숫자 정정 OCR 모델의 설계 및 구현 75

<Algorithm 5> context sensitive correction algorithm

ContextSensitiveCorrection(n1, n2, n3)

1 int d1 = DigitDistance(n1, n2 * n3) // counts of disparity of digits between n1 and n2 * n3

2 int d2 = DigitDistance(n2, n1 / n3)

3 int d3 = DigitDistance(n3, n1 / n2)

4 return arg min {d1, d2, d3}

<Algorithm 6> distance measurement between the two numeric digits

DigitDistance(n1, n2)

1 char digits1[] = DigitRepresentation(n1, digits1) // split each digit of a number n1

2 char digits2[] = DigitRepresentation(n2, digits2) // split each digit of a number n2

3 int distance = 0

4 for k = 0 to k = digit1.length

5 if digits1[k] != digits2[k]

6 distance++ // counting measure

7 return distance

which number was wrong then correction was

straightforward.

<Algorithm 5> describes how to detect the number

damaged with error. The algorithm is based on the idea

of OCR errors occur to a subsequence of digit

representation. For example, a set of the three number

{308, 20, 15} does not satisfy n1 = n2 * n3. The all of

the possible scenarios are among the following three

cases:

Case 1. 300 = 20 * 15 : one count of digit error ‘8’ in

 308

Case 2. 308 = 20.53 * 15 : three count of digit errors ‘.53’

 in 20

Case 3. 308 = 20 * 15.4 : two count of digit errors ‘.4’ in

 15

We determined to select the case having the minimum

counts of digit error, i.e., correct ‘308’ to ‘300’ for the

example case.

DigitDistance in Algorithm 5 is a distance measure

that is a simple counting measure by digit-by-digit

comparison. An implementation detail is presented in

<Algorithm 6>.

4. Experiments and Results

4.1 Data Set

We constructed a ground truth data set sampled by

random selection of 1,000 scanned invoice documents from

an archive. The ground truth data were divided into the

four statistically independent subsets: set1 with 240

samples, set2 with 340 samples, set3 with 230 samples,

and set4 with 190 samples.

In the automated invoice processing, the contents of an

output are the details of transactions: the number of the

product items in the document, the count of product

items that are shipped, and the unit cost of the item. As

an example from (Fig. 7) under the column “PRICE”,

there are three numbers (33.87, 19.34, and 17.56), under

the “SHIPPED” column, there are also three numbers (4,

4, and 5), and under the “AMOUNT” column the three

numbers (135.48, 96.70, and 97.40).

As an important property, every invoice document

should contain its unique “purchase order number” or

“customer order number”. For the convenience of notation,

we name it as PO number. In (Fig. 7) for an example of

price item line detection, the rectangles are drawn to

indicate the detected regions. The PO number appeared at

the right above ‘DESCRIPTION’ column. Exploiting this

property of uniqueness of PO number, each of the

selected documents was labeled with the PO number and

the values for the price line items (such as the shipped

quantity, the unit cost, and the extension price) were

manually acquired.

76 정보처리학회논문지 D 제18-D권 제1호(2011. 2)

(Fig. 7) An example of price item line detection. The red rectangles indicate the detected regions

In this study a ground truth data was defined as an

instance of XML configuration type nested structure

whose fields are consisted of “PO” number, the number

of price lines, the value of unit cost, the value of shipped

quantity.

<PO number> PO number </PO number>

<LINE number> number of price lines </LINE number>

<LINE number 1> unit cost, shipped quantity <LINE

number 1>

…

…

<LINE number n> unit cost, shipped quantity <LINE

number n>

The format of the output from the invoice parsing

system is designed to be same with the format of the

ground truth data. For example, from the invoice seen in

(Fig. 7) the system extracted PO number, the number of

lines, the unit cost, the shipped quantity, and the

extension amount as below:

PO number: 1374145

The number of the price lines: 3.

 At Line1. 33.87 (unit cost), 4 (shipped quantities),

 135.48 (extension amount)

 At Line2. 19.34 (unit cost), 5 (shipped quantities),

 96.70 (extension amount)

 At Line3. 17.56 (unit cost), 5 (shipped quantities),

 87.80 (extension amount)

Using this information the auto‐validation module

created the output data as

<PO number> 1374145 </PO number>

<LINE number> 3 </LINE number>

 <LINE number> 33.87, 4 <LINE number>

 <LINE number> 19.34, 5 <LINE number>

 <LINE number> 17.56, 5 <LINE number>

4.2 Experiment Procedure

There exists an automated invoice parsing system

(AIPS) which takes a scanned document as an input and

extracted details of product items as an output. The AIPS

is a two-stage process: at the first stage it detects the

region of interest; at the second stage, it parses the

information from texts within the region. For illustration

purpose, the three red rectangles in (Fig. 7) containing

the product items as an output of the first stage. At the

second stage, a parser extracts invoice information from

the texts within the region. For example, consider the top

rectangles from the first stage. The collection of texts are

{“P”, “47382”, “5/16-18”, “SUPT”, “ALLOY”, “GUN”,

“TAP”, “33.87”, “EA”, “4”, “4”, “135.48”} from which a

parser in the AIPS extracts a triplet {“4”, “33.87”,

“135.48”} at the second stage. Of the two stages in AIPS,

the proposed correction model involves only on the

second stage. For the purpose of estimating performance

effect, we implemented an API module that redirected the

interface of the existing AIPS in order to run simulation

the following two scenarios in parallel:

Scenario-1: Invoice extraction in the original way without

 integration with our correction module.

Scenario-2: Invoice extraction in the new way integrated

 with our correction module.

A schematic diagram for this test procedure is

demonstrated in (Fig. 8). Using the data set prepared as

described in 4.1, a test simulator invokes AIPS. Using the

intermediate output, the tester checks PO numbers (read

from the input invoice) with the one in the ground truth

set. If the query on PO number fails, then the process is

recorded as failure and start over with the next document

in the data set. If the PO number found is matched, then

the tester checks the number of lines detected with the

ground truth data. If the number of lines is not matched

제한적 문맥 인식과 다중 스트림을 기반으로 한 숫자 정정 OCR 모델의 설계 및 구현 77

(Fig. 8) A test procedure for evaluation of performance effect by the digit error correction

then the process is recorded as failure and start over

with new data. If the number of lines is matched with

the value in the ground truth set, the test simulator forks

the process into the two sub-processes: the one runs

with correction model to parse product items (shipped

quantity, unit cost, and amount), while the other runs

without correction model. The outputs from two

sub-processes are compared by auto-validation process.

For estimation of the statistics, we used the ground

truth data constructed at section 4.1. The auto-validator

performed a matching process to determine “correct”

(matched) or “wrong” (mismatched). The matching was

quite a stringent as the following:

․Search the matching PO number from the ground truth

data, if it cannot match then the auto-validator

registered as “wrong”;

․Match with the number of price lines, if the match fails

then the auto-validator registered as “wrong”;

․Match with the field values of unit cost and shipped

quantity, if the match fails then the auto-validator

registered as “wrong”;

4.3 Evaluation Measure

The auto-validator is a binary classifier with the

categories of “correct” and “wrong”. We employed the

two typical measures for the binary classifier, “precision”

and “recall rates”. The precision is a value of the number

of correct match divided by the number of sample data,

and the recall is a value of the number of actual match

divided by the number of correct match.

The test simulator, described in section 4.2, provides

the statistics, {{p1, r1}, {p2, r2}, {p3, r3}}, from the three

methods (M1, M2, and M3). “{pk, rk}” indicates the

precision and the recall of Mk , for k=1, 2, 3,

respectively.

4.4 Performance Analysis

M#, Pr, and

Rc denotes the number of data matched, the precision,

and the recall rates, respectively.

<Table 1> presents the results of the experiments. In

the table the method 1 (M1) indicates that the tests

procedure without including our module, the method 2

(M2) indicates that the tests procedure with digit

correction using multiple stream (without context

sensitive correction), and the method 3 (M3) indicates

that the test procedure with full version of our model.

M#, Pr, and Rc denotes the number of data matched, the

precision, and the recall rates, respectively.

78 정보처리학회논문지 D 제18-D권 제1호(2011. 2)

<Table 1> experimental results of preformance effect by the digit correction algorithm

Data ID Method
Total

Sample
PO Match

Line #

Match

Unit Cost Shipped Quantity

M# Pr Rc M# Pr Rc

Set1

M1

240 239 216

119 55.0% 90.8% 154 71.3% 92.9%

M2 158 73.1% 92.4% 171 79.2% 93.0%

M3 162 75.0% 92.6% 173 80.1% 93.1%

Set2

M1

340 334 274

179 65.3% 92.2% 184 67.2% 92.4%

M2 198 72.3% 92.0% 192 70.1% 91.7%

M3 198 72.3% 92.4% 193 70.4% 92.2%

Set3

M1

230 223 183

128 70.0% 89.4% 134 73.2% 90.3%

M2 145 79.2% 91.7% 157 85.8% 92.4%

M3 149 81.4% 91.3% 160 87.4% 91.9%

Set4

M1

190 188 132

79 60.0% 88.6% 81 61.4% 89.0%

M2 89 67.4% 89.9% 91 68.9% 90.1%

M3 93 70.5% 91.4% 94 71.2% 91.5%

Sum

M1

1000 984 805

505 64.3% 90.7% 553 70.5% 91.5%

M2 590 75.2% 91.7% 611 77.8% 92.0%

M3 602 79.7% 92.0% 620 79.0% 92.3%

(Fig. 9) comparison graphs of the precision and the recall rates in terms of correction methods (M1, M2, and M3)

The results show that M3 gained over M1 about 15.4%

and 8.5% for the unit cost and the shipped quantities,

respectively, and M2 gained over M1 about 10.9% and

7.3% for the unit cost and the shipped quantities,

respectively. The performance enhancement of the context

sensitive correction is about 4.5% and 1.2% for the unit

cost and the shipped quantities, respectively. For the

purpose of visualization of the precision and recall rates,

(Fig. 9) is presented. The graphs show consistent

improvement in the precision and recall rates.

제한적 문맥 인식과 다중 스트림을 기반으로 한 숫자 정정 OCR 모델의 설계 및 구현 79

Data

ID
Method

Validatable

Data

Unit Cost Shipped Quantities

Recovered # % Recovered # %

Set 1
M2

216
39 18.1% 17 7.9%

M3 43 19.9% 19 8.8%

Set 2
M2

274
19 6.9% 8 2.9%

M3 19 6.9% 9 3.3%

Set 3
M2

183
17 9.3% 23 12.6%

M3 21 11.5% 27 14.8%

Set 4
M2

132
10 7.6% 10 7.6%

M3 14 10.6% 13 9.8%

Sum
M2

805
85 10.6% 58 7.2%

M3 97 12.0% 68 8.4%

(Fig. 10) An example requires general context correction

As seen in the <Table 1> 805 number of data (out of

1000) have passed the line number matching stage. The

rest of 195 invoices already had problem of parsing the

correct information regardless of digit correction. We

considered the 805 invoices as the validatable set.

As summarized in <Table 2> for the querying the unit

cost field, 85 additional invoice documents were

automatically validated by using the multiple streams

(M2) and 97 additional invoice documents were validated

by using context sensitive correction (M3), for the

querying the shipped quantity field, 58 additional invoice

documents were automatically validated by using the

multiple streams (M2) and 69 additional invoice

documents were validated by using the context sensitive

correction (M3).

<Table 2> number of invoices recovered by digit error

correction

5. Conclusion

The automated document system (or document

understanding system) has drawn a lot of attention in the

industry. The core technology for the system is a well

behaving query and correction model. There have been

intense efforts and evolutions for the dictionary based

text query and recovery model, but not much for the

non-alphabetic texts.

To the best of our knowledge, the proposed model of

query and correction for the digits using multiple OCR

text streams followed by the k-gram of the postings list

is a new attempt. At the previous section we showed

that the use of multiple streams improved the

performance of an automated document system more than

7%, which implies, considering the strict matching

criterion on the outputs from the invoice parsing system,

the correction of OCR errors has been significantly (at

least 8%) enhanced.

The context sensitive correction module adopted in this

model required a problem domain specific formula: for an

invoice document, three numbers in a line should satisfy

a relational formula z = x * y (unit cost * quantities =

extension amount). There should be a generic scheme for

query reformulation, e.g. apply all the possible operations

like addition, subtraction, multiplication, division, and etc

and automatically find out the relational formula through

some form of training processes. In our study, the

context sensitive correction improved the overall accuracy

of the system at least about 1.2%. In (Fig. 10) we

80 정보처리학회논문지 D 제18-D권 제1호(2011. 2)

demonstrate the necessity of generic context correction.

This invoice does not contain a formula z = x * y with

the variables of the quantity, unit cost, and extension but

it contains z = x * y + a with the variables of ‘AMT’,

‘EX. RATE’, ‘AMOUNT’, and ‘VAT’.

References

[1] C. D. Manning, P. Raghavan, and H. Schultze, “An Introduction

to Information Retrieval”, Cambridge University Press, 2008.

[2] R. Kosala and H. Blockeel, Web Mining Research: A Survey

ACM SIGKDD Explorations Newsletter, vol. 2, no. 1, pp.

1-15, 2000.

[3] C. Mascolo, “Specification, analysis and prototyping of mobile

code systems”, PhD thesis, Universita di Bologna, 2001.

[4] A. Perez, F. Rodriguez, and B. Terrazas, “Ontology based legal

information retrieval to improve the information access in

e-government”, IWWW conf. Proc. 15
th
 ICWWW, 2006.

[5] E. L. Rissland, J.J. Daniels, “A hybrid CBR-IR approach to

legal information retrieval”, ICAIL, Proc. 5
th
 ICAIL, pp52-61,

1995.

[6] T. Honkela, S. Kaski, K. Lagus, T. Kohonen, “WEBSOM –

self‐organizing maps of document collections”, Proceedings

of WSOM, pp.310-315, 1997.

[7] H. Li, D. Doermann, O. Kia, "Automatic Text Detection and

Tracking in Digital Video," IEEE TRANSACTIONS ON

IMAGE PROCESSING, VOL 9, PART 1, pages 147-155,

2000.

[8] Rasagna, V., Kumar, A., Jawahar, C. V., and Manmatha, R.

“Robust Recognition of Documents by Fusing Results of

Word Clusters,” ICDAR. IEEE, 566-570. 2009.

[9] Li, L. and Tan, C. L., “Improving OCR Text Categorization

Accuracy with Electronic Abstracts,” DIAL. IEEE, 82-87,

2006.

[10] Xu, Y. and Nagy, G. “Prototype Extraction and Adaptive

OCR,” IEEE Trans. Pattern Anal. Mach. Intell. 21, 1280-1296,

1999.

[11] Avi-Itzhak, Hadar I. and Diep, Thanh A. and Garland, Harry,

“High Accuracy Optical Character Recognition Using Neural

Networks with Centroid Dithering,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, Vol. 17, 1995.

[12] F. Drira, F. LeBourgeois, H. Emptoz, "Document Images

Restoration by a New Tensor Based Diffusion Process:

Application to the Recognition of Old Printed Documents,"

ICDAR, pp. 321-325, 2009.

[13] U. Garain, M. P. Chakraborty, D. Majumder, "Improvement

of OCR Accuracy by Similar Character Pair Discrimination:

an Approach based on Artificial Immune System," The 18th

ICPR'06, 2006.

[14] Garain, U., Jain, A., Maity, A., Chanda, B., “Machine reading

of camera‐held low quality text images: An ICA‐based

image enhancement approach for improving OCR accuracy,”,

ICPR08(1-4)., 2008.

[15] Koga, M., Mine, R., Kameyama, T., Takahashi, T., Yamazaki,

M., and Yamaguchi, T., “Camera-based Kanji OCR for

Mobile-phones: Practical Issues,” ICDAR. IEEE, 635-639,

2005.

[16] K. Shin, B. Kang, and K. Park, “Super-resolution Iris Image

Restoration using Single Image for Iris Recognition”, KSII

Trans. Internet and Information System, v. 4, no. 2, 2010.

[17] F. Daniyal, M. Taj, and A. Cavallaro, "Content and

task-based view selection from multiple video streams,"

Multimedia Tools Appl., v. 46, no. 2-3, pp. 235-258, 2010.

신 현 경

e-mail : hyunkyung@kyungwon.ac.kr

2002년 State University of New York at

Stony Brook. 대학원 응용 수학과

(공학박사)

2008년～현 재 경원대학교 수학정보학과

 조교수

관심분야 : Image Processing. Neural Network. Machine Learning.

