• Title/Summary/Keyword: Query Model

Search Result 563, Processing Time 0.023 seconds

Design and Implementation of Moving Object Model for Nearest Neighbors Query Processing based on Multi-Level Global Fixed Gird (다단계 그리드 인덱스 기반 최근접 질의 처리를 위한 이동체 DBMS 모델의 설계와 구현)

  • Joo, Yong-Jin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.3
    • /
    • pp.13-21
    • /
    • 2011
  • In mobile environment supporting mobility technologies, user requirements have been increased with respect to utilization of location information. In particular, moving object DBMS has consistently posed in order to efficiently maintain traffic information related to location of vehicle which tents to tremendously change over time. Despite the fact that these sorts of researches must be taken into consideration, empirical studies on moving object in terms of map database for lbs service, spatial attribute of which is continuously changed over time, have rarely performed. Therefore, aim of this paper is to suggest efficient spatial index scheme, which is capable of supporting query processing algorithm and location of moving object over time, by developing new empirical model. As a result, we can come to the conclusion that moving object model based on multi-fixed grid index makes it possible to cut down on the number of entity for retrieving. What's more, this model enables hierarchical data to be accessed through efficient spatial filtering on large-scale lbs data and constraints in accordance with level in order to display map.

Implementation of Algebra and Data Model based on a Directed Graph for XML (방향 그래프 기반 XML 데이터 모델과 대수 구현)

  • Park, Seong-Hui;Choe, Eun-Seon;Ryu, Geun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.8D no.6
    • /
    • pp.799-812
    • /
    • 2001
  • As XML become more popular for encoding data and exchanging format on the web, recent work on processing XML Document in DBMS has been performed. However, there is no formal data model for XML, and there is lack of research on XML algebra for processing complex XML query and even the mediators have many restrictions. Therefore, this paper proposes formal data model and algebra based on directed edge labeled graph for XML query. To implement algebra, not only algorithms of operation for algebra are presented, but also they are implemented using access method and path index based on RDBMS or ORDBMS. In particular, experiments to show the effectiveness of the implemented algebra are performed on XML documents on EST data which are semistructured data.

  • PDF

Development of a Regulatory Q&A System for KAERI Utilizing Document Search Algorithms and Large Language Model (거대언어모델과 문서검색 알고리즘을 활용한 한국원자력연구원 규정 질의응답 시스템 개발)

  • Hongbi Kim;Yonggyun Yu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.5
    • /
    • pp.31-39
    • /
    • 2023
  • The evolution of Natural Language Processing (NLP) and the rise of large language models (LLM) like ChatGPT have paved the way for specialized question-answering (QA) systems tailored to specific domains. This study outlines a system harnessing the power of LLM in conjunction with document search algorithms to interpret and address user inquiries using documents from the Korea Atomic Energy Research Institute (KAERI). Initially, the system refines multiple documents for optimized search and analysis, breaking the content into managable paragraphs suitable for the language model's processing. Each paragraph's content is converted into a vector via an embedding model and archived in a database. Upon receiving a user query, the system matches the extracted vectors from the question with the stored vectors, pinpointing the most pertinent content. The chosen paragraphs, combined with the user's query, are then processed by the language generation model to formulate a response. Tests encompassing a spectrum of questions verified the system's proficiency in discerning question intent, understanding diverse documents, and delivering rapid and precise answers.

Development of an object-oriented model management framework for computer executable algebraic modeling languages (최적화 모델링 언어를 위한 객체 지향 모형 관리 체계의 개발)

  • 허순영
    • Korean Management Science Review
    • /
    • v.11 no.2
    • /
    • pp.43-63
    • /
    • 1994
  • A new model management framework is proposed to accommodate wide-spreading algebraic modeling languages (AMLs), and to facilitate a full range of model manipulation functions. To incorporate different modeling conventions of the leading AMLs (AMPL, GAMS, and SML) homogeneously, generic model concepts are introduced as a conceptual basis and are embodied by the structural and operational constructs of an Object-Oriented Database Management System(ODBMS), enabling the framework to consolidate components of DSSs(database, modelbase, and associated solvers) in a single formalism effectively. Empowered by a database query language, the new model management framework can provide uniform model management commands to models represented in different AMLs, and effectively facilitate integration of the DSS components. A prototype system of the framework has been developed on a commercial ODBMS, ObjectStore, and a C++ programming language.

  • PDF

An Object-Level Feature Representation Model for the Multi-target Retrieval of Remote Sensing Images

  • Zeng, Zhi;Du, Zhenhong;Liu, Renyi
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.2
    • /
    • pp.65-77
    • /
    • 2014
  • To address the problem of multi-target retrieval (MTR) of remote sensing images, this study proposes a new object-level feature representation model. The model provides an enhanced application image representation that improves the efficiency of MTR. Generating the model in our scheme includes processes, such as object-oriented image segmentation, feature parameter calculation, and symbolic image database construction. The proposed model uses the spatial representation method of the extended nine-direction lower-triangular (9DLT) matrix to combine spatial relationships among objects, and organizes the image features according to MPEG-7 standards. A similarity metric method is proposed that improves the precision of similarity retrieval. Our method provides a trade-off strategy that supports flexible matching on the target features, or the spatial relationship between the query target and the image database. We implement this retrieval framework on a dataset of remote sensing images. Experimental results show that the proposed model achieves competitive and high-retrieval precision.

Design and Implementation of a SQL based Moving Object Query Process System for Controling Transportation Vehicle (물류 차량 관제를 위한 SQL 기반 이동 객체 질의 처리 시스템의 설계 및 구현)

  • Jung, Young-Jin;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.12D no.5 s.101
    • /
    • pp.699-708
    • /
    • 2005
  • It becomes easy and generalized to track the cellular phone users and vehicles according to the Progress of wireless telecommunication, the spread of network, and the miniaturization of terminal devices. It has been constantly studied to provide location based services to furnish suitable services depending on the positions of customers. Various vehicle tracking and management systems are developed to utilize and manage the vehicle locations to relieve the congestion of traffic and to smooth transportation. However the designed previous work can not evaluated in real world, because most of previous work is only designed not implemented and it is developed for simple model to handle a point, a line, a polygon object. Therefore, we design a moving object query language and implement a vehicle management system to search the positions and trajectories of vehicles and to analyze the cost of transportation effectively. The designed query language based on a SQL can be utilized to get the trajectories between two specific places, the departure time, the arrival time of vehicles, and the predicted uncertainty positions, etc. In addition, the proposed moving object query language for managing transportation vehicles is useful to analyze the cost of trajectories in a variety of moving object management system containing transportation.

Business Application of Convolutional Neural Networks for Apparel Classification Using Runway Image (합성곱 신경망의 비지니스 응용: 런웨이 이미지를 사용한 의류 분류를 중심으로)

  • Seo, Yian;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.1-19
    • /
    • 2018
  • Large amount of data is now available for research and business sectors to extract knowledge from it. This data can be in the form of unstructured data such as audio, text, and image data and can be analyzed by deep learning methodology. Deep learning is now widely used for various estimation, classification, and prediction problems. Especially, fashion business adopts deep learning techniques for apparel recognition, apparel search and retrieval engine, and automatic product recommendation. The core model of these applications is the image classification using Convolutional Neural Networks (CNN). CNN is made up of neurons which learn parameters such as weights while inputs come through and reach outputs. CNN has layer structure which is best suited for image classification as it is comprised of convolutional layer for generating feature maps, pooling layer for reducing the dimensionality of feature maps, and fully-connected layer for classifying the extracted features. However, most of the classification models have been trained using online product image, which is taken under controlled situation such as apparel image itself or professional model wearing apparel. This image may not be an effective way to train the classification model considering the situation when one might want to classify street fashion image or walking image, which is taken in uncontrolled situation and involves people's movement and unexpected pose. Therefore, we propose to train the model with runway apparel image dataset which captures mobility. This will allow the classification model to be trained with far more variable data and enhance the adaptation with diverse query image. To achieve both convergence and generalization of the model, we apply Transfer Learning on our training network. As Transfer Learning in CNN is composed of pre-training and fine-tuning stages, we divide the training step into two. First, we pre-train our architecture with large-scale dataset, ImageNet dataset, which consists of 1.2 million images with 1000 categories including animals, plants, activities, materials, instrumentations, scenes, and foods. We use GoogLeNet for our main architecture as it has achieved great accuracy with efficiency in ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Second, we fine-tune the network with our own runway image dataset. For the runway image dataset, we could not find any previously and publicly made dataset, so we collect the dataset from Google Image Search attaining 2426 images of 32 major fashion brands including Anna Molinari, Balenciaga, Balmain, Brioni, Burberry, Celine, Chanel, Chloe, Christian Dior, Cividini, Dolce and Gabbana, Emilio Pucci, Ermenegildo, Fendi, Giuliana Teso, Gucci, Issey Miyake, Kenzo, Leonard, Louis Vuitton, Marc Jacobs, Marni, Max Mara, Missoni, Moschino, Ralph Lauren, Roberto Cavalli, Sonia Rykiel, Stella McCartney, Valentino, Versace, and Yve Saint Laurent. We perform 10-folded experiments to consider the random generation of training data, and our proposed model has achieved accuracy of 67.2% on final test. Our research suggests several advantages over previous related studies as to our best knowledge, there haven't been any previous studies which trained the network for apparel image classification based on runway image dataset. We suggest the idea of training model with image capturing all the possible postures, which is denoted as mobility, by using our own runway apparel image dataset. Moreover, by applying Transfer Learning and using checkpoint and parameters provided by Tensorflow Slim, we could save time spent on training the classification model as taking 6 minutes per experiment to train the classifier. This model can be used in many business applications where the query image can be runway image, product image, or street fashion image. To be specific, runway query image can be used for mobile application service during fashion week to facilitate brand search, street style query image can be classified during fashion editorial task to classify and label the brand or style, and website query image can be processed by e-commerce multi-complex service providing item information or recommending similar item.

Reasoning with Conceptual Distance in an Information Retrieval Model (정보검색 모델에서 개념적 거리를 이용한 추론)

  • 김영환;김진형
    • Korean Journal of Cognitive Science
    • /
    • v.2 no.1
    • /
    • pp.193-204
    • /
    • 1990
  • This paper discusses a reasoning model of information retrieval with a hierarchical thesaurus.The model computes the conceptual distance between a query and an object,both are indexed with weighted terms from a hierarchical thesaurus. The proposed model allows Boolean operators for user queries and edge weights for a hierarchical thesaurus. Experimental results have shown that the proposed model simulates, with surprising accuracy, people in the assessment of conceptual closeness between queries objects.

Design and Implemetation of an Object-Relational Geographic Information System based on a commercial ORDB (상용 ORDB를 하부구조로 갖는 객체관계형 지리정보 시스템의 설계 및 구현)

  • 윤지희
    • Spatial Information Research
    • /
    • v.5 no.1
    • /
    • pp.77-88
    • /
    • 1997
  • This paper presents the design and implementaion of an object-relational geographic information system. This system has been developed on top of a commercial object-relational database management system. It provides flexible spatial data model, spatial query language, visual user interface, and efficient spatial access methods(D0T) in which traditional primary-key access methods can be applied. We report on our design choices and describe the current status of Implementation. The conceptual model of the system is based on SDTS, and is mapped to the intemal obiect-oriented data model. Kevwords : object-oriented data model, GIS, spatial data model, spatial access method.

  • PDF

Privacy Protection Model for Location-Based Services

  • Ni, Lihao;Liu, Yanshen;Liu, Yi
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.96-112
    • /
    • 2020
  • Solving the disclosure problem of sensitive information with the k-nearest neighbor query, location dummy technique, or interfering data in location-based services (LBSs) is a new research topic. Although they reduced security threats, previous studies will be ineffective in the case of sparse users or K-successive privacy, and additional calculations will deteriorate the performance of LBS application systems. Therefore, a model is proposed herein, which is based on geohash-encoding technology instead of latitude and longitude, memcached server cluster, encryption and decryption, and authentication. Simulation results based on PHP and MySQL show that the model offers approximately 10× speedup over the conventional approach. Two problems are solved using the model: sensitive information in LBS application is not disclosed, and the relationship between an individual and a track is not leaked.