• Title/Summary/Keyword: Quenching parameter

Search Result 44, Processing Time 0.023 seconds

A Study on Quenching Characteristics of a High Pressure Gas Quenching System (고압가스 냉각시스템의 특성 연구)

  • Kim, Han-Seok;An, Guk-Yeong;Lee, Sang-Min;Jang, Byeong-Rok
    • 연구논문집
    • /
    • s.34
    • /
    • pp.11-19
    • /
    • 2004
  • An Experimental study on the characteristics of high pressure gas quenching system was carried out in the present study. The characteristics of gas quenching system have been studied with high pressure gas chamber and specimen for various gas pressure and velocity which are the design parameter of quenching system. The quenching gas was used compressed air which properties are very similar with Nitrogen gas usually used in industrial gas quenching system. The result shows that the quenching rate of mid surface of specimen is lower than each ends of them which are close to low temperature quenching surface. And to increases the quenching intensity, the increment of quenching gas pressure is more efficient than the increment of quenching gas velocity at the point of reducing the circulation fan power.

  • PDF

FLUORESCENCE QUENCHING OF BBOT BY ANILINE IN DIFFERENT ORGANIC SOLVENTS

  • Kadadevarmath, J.S.;Giraddi, T.P.;Chikkur, G.C.
    • Journal of Photoscience
    • /
    • v.4 no.3
    • /
    • pp.105-112
    • /
    • 1997
  • The fluorescence quenching of 2, 5-di-(5-tert-butyl-2-benzoxazolyl)-thiophene (BBOT) by aniline in five different solvents namely heptane, hexane, cyclohexane, dioxane and acetonitrile has been carried out at room temperature with a view to understand the quenching mechanisms. The experimental results show positive deviation in the Stern-Volmer plots in all the solvents. In order to interpret these results we have invoked the Ground state complex and sphere of action static quenching models. Using these models various rate parameters have been determined. The magnitudes of these parameters suggest that sphere of action static quenching model agrees well with the experimental results. Hence this positive deviation is attributed to the static and dynamic quenching. Further, with the use of Finite Sink approximation model, it was possible to check these bimolecular reactions as diffusion-limited and to estimate independently distance parameter R$^1$ and mutual diffusion coefficient D. Finally an attempt has been made to correlate the values of R$^1$ and D with the values of the encounter distance R and the mutual diffusion coefficient D determined using the Edward's empirical relation and Stokes-Einstein relation.

  • PDF

Effects of Quenching and Tempering Process Conditions on the Microstructure and Hardness of SCM420 Alloy steel (SCM420 합금강의 미세조직 및 경도에 미치는 급냉 및 템퍼링 공정조건의 영향)

  • Jun-Ha Lee;Kyung-Sik Shin;Jeong-Min Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.4
    • /
    • pp.182-187
    • /
    • 2024
  • To improve and control the mechanical properties of low alloy steel, the influence of quenching and tempering process conditions was investigated. In the case of quenching heat treatment, a comparison was made between the conventional method of heating to the austenite region followed by single quenching and a method involving double quenching, followed by high-temperature tempering. It was observed that specimens subjected to double quenching exhibited significantly finer tempered microstructures compared to those subjected to conventional quenching, resulting in noticeably higher hardness. Additionally, a study was conducted to investigate the variation in hardness with changes in tempering temperature and time after the same conventional quenching treatment. As expected, an increase in tempering temperature or time led to a decrease in hardness, and the correlation between hardness and the Hollomon-Jeffe Parameter was confirmed. It was also observed that during high-temperature tempering, the size of carbides significantly increased.

Fluorescence Quenching of Bis-msb by Carbon Tetrachloride in Different Solvents

  • Thipperudrappa, J.;Biradar, D.S.;Lagare, M.T.;Hanagodimath, S.M.;Inamdar, S.R.;Kadadevaramath, J.S.
    • Journal of Photoscience
    • /
    • v.11 no.1
    • /
    • pp.11-17
    • /
    • 2004
  • Fluorescence quenching of l,4-bis [2-(2-methylphenyl) ethenyl]-benzene (Bis-MSB) by carbon tetrachloride in five different solvents namely hexane, cyclohexane, toluene, benzene and dioxane has been carried out at room temperature with a view to understand the quenching mechanisms. The Stern-Volmer plot has been found to be non-linear with a positive deviation for all the solvents studied. In order to interpret these results we have invoked the Ground state complex and Sphere of action static quenching models. Using these models various rate parameters have been determined. The magnitudes of these parameters imply that sphere of action static quenching model agrees well with the experimental results. Hence the positive deviation in the Stem-Volmer plots is attributed to the static and dynamic quenching. Further, with the use of Finite Sink approximation model, it was possible to check whether these bimolecular reactions as diffusion limited and to estimate independently distance parameter R' and mutual diffusion coefficient D. Finally an effort has been made to correlate the values of R'and D with the values of the encounter distance R and the mutual diffusion coefficient D determined using the Edwardis empirical relation and Stokes-Einstein relation.

  • PDF

ESTIMATION OF RESIDUAL STRESS IN CYLINDER HEAD

  • KIM B.;EGNER-WALTER A.;CHANG H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.69-74
    • /
    • 2006
  • Residual stresses are introduced in aluminum cylinder head during quenching at the end of the T6 heat treatment process. Tensile residual stress resulted from quenching is detrimental to fatigue behavior of a cylinder head when it is overlapped with stresses of engine operation load. Quenching simulation has been performed to assess the distribution of residual stress in the cylinder head. Analysis revealed that in-homogeneous temperature distribution led to high tensile residual stress at the foot of the long intake port, where high stresses of engine operation load are expected. Measurements of residual stress have been followed and compared with the calculated results. Results successfully proved that high tensile residual stress, which was large enough to accelerate fatigue failure of the cylinder head, are formed during quenching process at the end of heat treatment at the same critical position. Effect of quenching parameters on the distribution of residual stress in cylinder head has been investigated by choosing different combination of heat treatment parameters. It was demonstrated that changes of quenching parameters led to more homogeneous temperature distribution during cooling and could reduce tensile residual stress at the critical region of the cylinder head used in this study.

Weibull Statistical Analysis of Micro-Vickers Hardness using Monte-Carlo Simulation (몬테카를로 시뮬레이션에 의한 미소 비커스 경도의 Weibull 통계 해석)

  • Kim, Seon-Jin;Kong, Yu-Sik;Lee, Sang-Yeal
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.346-352
    • /
    • 2009
  • In the present study, the Weibull statistical analysis using the Monte-Carlo simulation has been performed to investigate the micro-Vickers hardness measurement reliability considering the variability. Experimental indentation test were performed with a micro-Vickers hardness tester for as-received and quenching and tempering specimens in SCM440 steels. The distribution of micro-Vickers hardness is found to be 2-parameter Weibull distribution function. The mean values and coefficients of variation (COV) for both data set are compared with results based on Weibull statistical analysis. Finally, Monte-Carlo simulation was performed in order to evaluate the effect of sample size on the micro-Vickers hardness measurement reliability. For the parent distribution with shape parameter 30.0 and scale parameter 200.0 (COV=0.040), the number of sample data required to obtain the true Weibull parameters was founded by 20. For the parent distribution with shape parameter 10.0 and scale parameter 200.0 (COV=0.1240), the number of sample data required to obtain the true Weibull parameters was founded by 30.

Direct Heat Treatment of Alloyed Steel Forging (가공열을 이용한 합금강 단조품의 열처리)

  • Kwon, Y.N.;Kim, T.O.;Kwon, Y.C.;Park, D.G.;Lee, S.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.431-434
    • /
    • 2008
  • In the present study, direct quenching of alloyed steel after hot forging was simulated using commercial finite element program, $FORGE^{TM}$. A typical heat treatment of alloyed steels consists of quenching for hard martensite and subsequent tempering for toughness. In the practice, forgings which cool down to room temperature are heated to temperature of austenite regime. As investigated in the present study, direct quenching of hot forged stock would be beneficial in terms of energy saving. This process has already been propose and termed as ausforging or forged hardening. However, it is well known that quenching temperature would be the most critical factor to control heat treated forging properties. And it is very difficult to control quenching temperature when forged stock gets directly quenched after forging. In this study, we have calculated final forging temperature of stock. Also, quenching simulation was conducted using a series of material parameter which were also calculated using JMATpro, a commercial program for physical properties of materials.

  • PDF

Thermodynamic Modeling of Heat Loss and Quenching in a Down Scaled Combustor (형상 축소된 연소기의 열손실 및 소염해석 모델)

  • Lee, Dae-Hoon;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.919-926
    • /
    • 2002
  • Down scaled combustor undergoes increased heat loss that results in incomplete combustion or quenching of the flame as a consequence. Therefore, effect of enhanced heat loss should be understood to design a MEMS scale combustion devices. Existing combustion models are inadequate for micro combustors because they were developed for analysis of regular scale combustor where heat loss can be ignored during the flame propagation. In this research a combustion model is proposed in order to estimate the heat loss and predict quenching limit of flame in a down scaled combustor. Heat loss in the burned region is expressed in a convective form as a product of wall surface area, heat transfer coefficient and temperature difference. Comparison to the measurements showed satisfactory agreement of the pressure and temperature drop. Quenching is accounted for by introducing a correlation of quenching parameter and heat loss. The present model predicted burnt fraction of gases with reasonable accuracy and proved to be applicable in thermal design of a micro combustor.

Combustion Characteristics in Small Combustion Chamber Size about Quenching Distance (소염 거리에 근접하는 소형 연소실 환경에서의 연소특성)

  • Lee, Dae-Hoon;Choi, Kwon-Hyoung;Kwon, Se-Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.2
    • /
    • pp.63-68
    • /
    • 2000
  • Combustion phenomenon in scale-downed combustor is investigated. As the combustor scale decreases surface to volume ratio increases and chamber size approaches quenching distance. As the combustor scales down surface to volume ratio increases resulting increased heat loss. And this heat loss can affect quenching and instability of the flame. To investigate this effect plastic mini combustor is made. Stoichiometricaly premixed Hydrogen / air gas is used as fuel. Initial chamber pressure and chamber size are varied and the effects are evaluated. Peak pressure decreased with the decrease in chamber height. As initial chamber pressure decreases peak pressure decreases and this change is more important than scale down effect till the chamber height of 1mm. With this result and further information following the experiments design parameter for micro engine can be established.

  • PDF

A Study on Quenching Speed Prediction Method of Specimen for Evaluating the Oxide Layer of Uncoated Boron Steel Sheet (비도금 보론강판 산화층 평가용 시편의 퀜칭속도 예측기법 연구)

  • Lee, J.H.;Song, J.H.;Bae, G.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.1
    • /
    • pp.17-22
    • /
    • 2022
  • Hot stamping is widely used to manufacture structural parts to satisfy requirements of eco-friendly vehicles. Recently, hot forming technology using uncoated steel sheet is being studied to reduce cost and solve patent problems. In particular, research is focused on process technology capable of suppressing the generation of an oxide layer. To evaluate the oxide layer in the hot stamping process, Gleeble testing machine can be used to evaluate the oxide layer by controlling the temperature history and the atmosphere condition. At this time, since cooling by gas injection is impossible to protect the oxide layer on the surface of a specimen, research on a method for securing a quenching speed through natural cooling is required. This paper proposes a specimen shape design method to secure a target quenching speed through natural cooling when evaluating the oxide layer of an un-coated boron steel sheet by Gleeble test. For the evaluation of the oxide layer of the un-coated steel sheet through the Gleeble test, dog-bone and rectangular type specimens were used. In consideration of the hot stamping process, the temperature control conditions for the Gleeble test were set and the quenching speed according to the specimen shape design was measured. Finally, the quenching speed sensitivity according to shape parameter was analyzed through regression analysis. A quenching speed prediction equation was then constructed according to the shape of the specimen. The constructed quenching speed prediction equation can be used as a specimen design guideline to secure a target quenching speed when evaluating the oxide layer of an un-coated boron steel sheet by the Gleeble test.