• Title/Summary/Keyword: Quenching gas

Search Result 120, Processing Time 0.027 seconds

The Effect of Conducting Particles on Breakdown Phenomena in GIS (GIS내에서 금속이물이 절연파괴에 미치는 영향)

  • Kim, Min-Kyu;Moon, In-Wook;Kim, Youn-Taeg;Kim, Ik-Soo;Lee, Hyeong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1574-1576
    • /
    • 1994
  • $SF_6$ gas has become an important insulation medium in modern electric power apparatus, because of its high insulation withstand levels and good arc quenching capability. For the application of $SF_6$ gas in GIS the estimation of insulation properties is a fundamental point. Moreover the reduction of withstand levels in case of inhomogeneous fields caused by particles or fixed protrusions is of special interest. It is known that the presence of free conducting particles in GIS can significantly lower the insulating level of $SF_6$ gas at elevated pressure and also it has been recently shown that dielectric strength is greatly reduced by fast transients such as disconnector surges where metallic particles are involved. In this paper, we have disigned the particle test chamber rated 362kV for the purpose of investigating the discharge characteristics in SF6 gas where inhomogenius fields are caused by metallic particles.

  • PDF

Dual effects of ram pressure on star formation in multiphase disk galaxies with strong stellar feedback

  • Lee, Jaehyun;Kimm, Taysun;Katz, Harley;Rosdahl, Joakim;Devriendt, Julien;Slyz, Andrianne
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.28.2-28.2
    • /
    • 2021
  • We investigate the impact of ram pressure stripping due to the intracluster medium (ICM) on star-forming disk galaxies with a multiphase interstellar medium maintained by strong stellar feedback. We carry out radiation-hydrodynamic simulations of an isolated disk galaxy embedded in a 1011 M⦿ dark matter halo with various ICM winds mimicking the cluster outskirts (moderate) and the central environment (strong). We find that both star formation quenching and triggering occur in ram pressure-stripped galaxies, depending on the strength of the winds. HI and H2 in the outer galactic disk are significantly stripped in the presence of moderate winds, whereas turbulent pressure provides support against ram pressure in the central region, where star formation is active. Moderate ICM winds facilitate gas collapse, increasing the total star formation rates by ~40% when the wind is oriented face-on or by ~80% when it is edge-on. In contrast, strong winds rapidly blow away neutral and molecular hydrogen gas from the galaxy, suppressing star formation by a factor of 2 within ~200 Myr. Dense gas clumps with nH≳10 M⦿ pc-2 are easily identified in extraplanar regions, but no significant young stellar populations are found in such clumps. In our attempts to enhance radiative cooling by adopting a colder ICM of T=106K only a few additional stars are formed in the tail region, even if the amount of newly cooled gas increases by an order of magnitude.

  • PDF

Computational Simulation of Carburizing and Quenching Processes of a Low Alloy Steel Gear (저합금강 기어의 침탄 및 소입 공정에 대한 전산모사)

  • Lee, Kyung Ho;Han, Jeongho;Kim, Gyeong Su;Yun, Sang Dae;Lee, Young-Kook
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.6
    • /
    • pp.300-309
    • /
    • 2015
  • The aim of the present study was to predict the variations in microstructure and deformation occurring during gas carburizing and quenching processes of a SCM420H planetary gear in a real production environment using the finite element method (FEM). The motivation for the present study came from the fact that previous FEM simulations have a limitation of the application to the real heat treatment process because they were performed with material properties provided by commercial programs and heat transfer coefficients (HTC) measured from laboratory conditions. Therefore, for the present simulation, many experimentally measured material properties were employed; phase transformation kinetics, thermal expansion coefficients, heat capacity, heat conductivity and HTC. Particularly, the HTCs were obtained by converting the cooling curves measured with a STS304 gear without phase transformations using an oil bath with an agitator in a real heat treatment factory. The FEM simulation was successfully conducted using the aforementioned material properties and HTC, and then the predicted results were well verified with experimental data, such as the cooling rate, microstructure, hardness profile and distortion.

Characteristics and Risk Assessment of Flame Spreading Over Metal Dust Layers (퇴적금속 분진층을 전파하는 화염의 연소특성과 위험성 평가)

  • Han, Ou-Sup
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.47-52
    • /
    • 2005
  • The wide use of metal dusts have been found in industrial field and many dust explosion accidents occur by fire spread of dust layer. In this study, we developed a new experimental device to examine fire and explosion characteristics of the dust layer. Aspects of the burning zone over metals(Mg, Zr, Ta, Ti, etc) and PMMA(Polymethyl methacrylate) dust layers have been investigated experimentally to clarify behaviors (Spread rate and quenching distance) and effects of $N_2$ surrounding gas on the fire spread over metal dust layers. From the experimental result, it was found that the spread rate of metal dusts is larger than PMMA, the dependability of spread rate over the thickness of dust layer is small, and the minimum oxygen concentration of spread flame over Mg dust layer is 3.6-3.7 vol%. Since high correlation between the spread rate and the reciprocal of quenching distance was seen, relative risk prediction in those inflammable parameters can be predicted.

Expression and pH-dependence of the Photosystem II Subunit S from Arabidopsis thaliana

  • Jeong, Mi-Suk;Hwang, Eun-Young;Jin, Gyoung-Ean;Park, So-Young;Zulfugarov, Ismayil S.;Moon, Yong-Hwan;Lee, Choon-Hwan;Jang, Se-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1479-1484
    • /
    • 2010
  • Photosynthesis uses light energy to drive the oxidation of water at an oxygen-evolving catalytic site within photosystem II (PSII). Chlorophyll binding by the photosystem II subunit S protein, PsbS, was found to be necessary for energy-dependent quenching (qE), the major energy-dependent component of non-photochemical quenching (NPQ) in Arabidopsis thaliana. It is proposed that PsbS acts as a trigger of the conformational change that leads to the establishment of nonphotochemical quenching. However, the exact structure and function of PsbS in PSII are still unknown. Here, we clone and express the recombinant PsbS gene from Arabidopsis thaliana in E. coli and purify the resulting homogeneous protein. We used various biochemical and biophysical techniques to elucidate PsbS structure and function, including circular dichroism (CD), fluorescence, and DSC. The protein shows optimal stability at $4^{\circ}C$ and pH 7.5. The CD spectra of PsbS show that the conformational changes of the protein were strongly dependent on pH conditions. The CD curve for PsbS at pH 10.5 curve had the deepest negative peak and the peak of PsbS at pH 4.5 was the least negative. The fluorescence emission spectrum of the purified PsbS protein was also measured, and the ${\lambda}_{max}$ was found to be at 328 nm. PsbS revealed some structural changes under varying temperature and oxygen gas condition.

Enhancement of DNA-mediated Energy Transfer from Ethidium to meso-Tetrakis(N-methylpyridinium-4-yl)porphyrin by Ca2+ Ion

  • Kim, Jong-Moon;Park, Bo-Ra-Mi;Kim, Young-Rhan;Gong, Lindan;Jang, Myung-Duk;Kim, Seog-K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1165-1169
    • /
    • 2012
  • The fluorescence intensity of DNA-intercalated ethidium with [ethidium]/[DNA base] being 0.005 was quenched upon the binding of another intercalating ligand, meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP). Addition of $Ca^{2+}$ enhanced the quenching efficiency. The range of separations between donor and acceptor molecules, within which total quenching occurs, was calculated using a one-dimensional resonance energy transfer mechanism to be 9.5 base-pairs or $32.3{\AA}$ in the absence of $Ca^{2+}$ ions. The distance increased to 18.7 base-pairs or about $63.6{\AA}$ in the presence $100{\mu}M$ $Ca^{2+}$. Considering that (1) $Ca^{2+}$ had little effect on the binding modes of ethidium and TMPyP, which was investigated by reduced linear dichroism and (2) spectral overlap between the emission spectrum of ethidium and the absorption spectrum of TMPyP was maintained in the presence of $Ca^{2+}$, contributions from orientation factor and spectral overlap to $Ca^{2+}$-induced enhancement in DNA mediated energy transfer was limited. Although there is no direct evidence, electron transfer along the DNA stem may accompany the observed fluorescence quenching. In this respect, DNA bound $Ca^{2+}$ act as a partially conducting medium.

CORIUM COOLABILITY UNDER EX-VESSEL ACCIDENT CONDITIONS FOR LWRs

  • Farmer, Mitchell T.;Kilsdonk, Dennis J.;Aeschlimann, Robert W.
    • Nuclear Engineering and Technology
    • /
    • v.41 no.5
    • /
    • pp.575-602
    • /
    • 2009
  • In the wake of the Three Mile Island accident, vigorous research efforts were initiated to acquire a basic knowledge of the progression and consequences of accidents that involve a substantial degree of core degradation and melting. The primary emphasis of this research was placed on containment integrity, with: i) hydrogen combustion-detonation, ii) steam explosion, iii) direct containment heating (DCH), and iv) melt attack on the BWR Mark-I containment shell identified as energetic processes that could lead to early containment failure (i.e., within the first 24 hours of the accident). Should the core melt fail the reactor vessel, then non-condensable gas production from Molten Core-Concrete Interaction (MCCI) was identified as a mechanism that could fail the containment by pressurization over the long term. One signification question that arose as part of this investigation was the effectiveness of water in terminating an MCCI by flooding the interacting masses from above, thereby quenching the molten core debris and rendering it permanently coolable. Successful quenching of the core melt would prevent basemat melt through, as well as continued containment pressurization by non-condensable gas production, and so the accident progression would be successfully terminated without release of radioactivity to the environment. Based on these potential merits, ex-vessel corium coolability has been the focus of extensive research over the last 20 years as a potential accident management strategy for current plants. In addition, outcomes from this research have impacted the accident management strategies for the Gen III+LWR plant designs that are currently being deployed around the world. This paper provides: i) an historical overview of corium coolability research, ii) summarizes the current status of research in this area, and iii) highlights trends in severe accident management strategies that have evolved based on the findings from this work.

Decomposition of Chlorinated Methane by Thermal Plasma (열플라즈마에 의한 클로로메탄의 분해)

  • Kim, Zhen Shu;Park, Dong Wha
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.136-141
    • /
    • 2007
  • The decomposition of chlorinated methanes including $CCl_4$, $CCl_3H$, and $CCl_2H_2$ was carried out using a thermal plasma process and the characteristics of the process were investigated. The thermal equilibrium composition was analyzed with temperature by Fcatsage program. The decomposition rates at various process parameters including the concentration of reactants, flow rate of carrier gas, and quenching rate, were evaluated, where sufficiently high conversion over 92% was achieved. The generation of main products was strongly influenced by the reaction atmosphere; carbon, chlorine, and hydrogen chloride at neutral condition; carbon dioxide, chlorine, and hydrogen chloride at oxidative condition. The decomposition mechanism was speculated considering the results from Factsage and the identification of generated radicals and ionic species. The main decomposition pathways were found to be dissociative electron attachment and oxidative by radicals formed in a plasma state.

Recent Advance in High Pressure Induction Plasma Source

  • Sakuta, T.
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.395-402
    • /
    • 2001
  • An induction thermal plasma system have been newly designed for advanced operation with a pulse modulated mode to control the plasma power in time domain and to create non-equilibrium effects such as fast quenching of the plasma to produce new functional materials in high rate. The system consists of MOSFET power supply with a maximum power of 50 kW with a frequency of 460 kHz, an induction plasma torch with a 10-turns coil of 80 mm diameter and 150 mm length and a vacuum chamber. The pulse modulated plasma was successfully generated at a plasma power of 30 kW and a high pressure of 100 kPa, with taking the on and off time as 10 ms, respectively. Measurements were carried out on the time-dependent spectral lines emitted from Ar species. The dynamic behavior of plasma temperature in a pulse cycle was estimated by the Boltzmann plot and the excitation temperature of Ar atom was found to be changed periodically from around 0.5 to 1.7 eV during the cycle. Two application regions of the induction thermal plasma newly generated were introduced to material processing with high rate synthesis based on non equilibrium effects, and to the finding of new arc quenching gases coming necessary for power circuit breaker, which is friendly with earth circumstance alternative to SF6 gas.

  • PDF

Quenching of star formation in massive halos at z~2

  • Gobat, Raphael
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.32.1-32.1
    • /
    • 2015
  • The gradual infall of small dark matter halos onto larger ones has become a relatively straightforward aspect of the standard hierarchical formation paradigm. What happens to the baryons they contain, however, is less well understood. Of special relevance are the processes that regulate and ultimately suppress star formation in galaxies in the early universe. The z=1.5-2.5 epoch is then particularly interesting as a transition period when global star-formation in the universe starts peaking but also where the first ostensibly collapsed and virialized galaxy clusters appear, along with segregated galaxy populations. From a theoretical point of view, the mode of gas accretion in massive halos is also expected to change around this time, switching from a cold to a hot phase and affecting the build-up and evolution of the galaxies they host. A lot of effort has thus been devoted to the search for high-redshift structures, in particular galaxy clusters, through a variety of methods. However, as the limited area for which deep datasets are available remains relatively limited, only few massive z>1.5 structures have been found so far. Here I will instead discuss the regulation of star-formation in lower-mass, X-ray detected halos at z~2 and its implication for galaxy quenching at high redshift. As these smaller, group-size halos are vastly more abundant and structurally simpler than massive clusters, they allow for true statistical studies and offer a novel way to probe environmental effects in this transitional epoch.

  • PDF