• Title/Summary/Keyword: Quenching and tempering

Search Result 108, Processing Time 0.029 seconds

Effect of Vacuum Heat Treatment and Salt Bath Heat Treatment Conditions on Mechanical Properties of Hot Work Die Steel (열간 금형강의 기계적 성질에 미치는 진공열처리와 염욕열처리 조건의 영향)

  • Kim, Je-Don;Kim, Kyung-sik;Park, Ki-Ho
    • Design & Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.23-29
    • /
    • 2014
  • Salt bath heat treatment is usually used but recently vacuum heat treatment is increased for the heat treatment of hot work die steels. The differences in two heat treatment processes were compared by testing the mechanical properties of heat treated products. With two different features of processes, mechanical properties such as hardness, tensile strength and impact strength of products show very different results. In this study salt bath heat treated products showed higher tensile strength and impact strength than vacuum heat treated products but hardness was not much different. These lower mechanical properties of vacuum heat treated products are due to differences in heating and quenching process.

  • PDF

The Effect of Heat-treatment on Brazing Characteristics of WC-9%Co/SUJ2 Steel (WC-9%Co와 SUJ2강의 접합특성에 미치는 열처리의 영향)

  • 정하윤;김종철;박경채
    • Journal of Welding and Joining
    • /
    • v.15 no.5
    • /
    • pp.56-63
    • /
    • 1997
  • In The study, the bonding of WC-9%Co to SUJ2 steel using Ag-Cu-Zn-Cd insert metal has performed to investigate the bonding properties by heat-treatment. Bonding was brazed for 5-30min at 95$0^{\circ}C$, performed solution treatment for 5 min at 85$0^{\circ}C$ and sustained subsequently oil quenching. To investigate the effect of heat-treatment, tempering was executed at $600^{\circ}C$ for 30 min after oil quenching. Mechnical properties and chemical compositions on the brazed bonding interface were investigated by means of microstructural observation, 4-point bending test and EDS and XRD measurements. The results obtained were as follows. 1) The bonding strength of WC-9%Co/SUJ2 joints by Ag-Cu-Zn-Cd insert metal obtained about 78, 117 and 72MPa after brazing for 5, 20 and 30 min at 95$0^{\circ}C$. And the highest bonding strength obtained about 131MPa after brazing for10 min at 95$0^{\circ}C$ 2) Higher bonding strength of 288MPa was obtained in the joint that brazed for 10 min at 95$0^{\circ}C$, and carried out tempering for 30 min at $600^{\circ}C$ subsequently. 3) Fracture of joint brazed by Ag-Cu-Zn-Cd insert metal for 5, 10, 20 and 30 min created WC-9%Co/SUJ2 interface. The joint that brazed for 10 min at 95$0^{\circ}C$ and then tempered for 30 min at $600^{\circ}C$ was fractured at the site of WC-9%Co.

  • PDF

Tensile Properties of Energy Saving Wire (ESW) with respect to Temperatures of High Frequency Induction Heat Treatment (고주파 열처리 온도에 따른 선조질강의 인장특성)

  • Lee, Jin Beom;Kang, Namhyun;Park, Ji Tae;Ahn, Soon-Tae;Park, Yeong-Do;Choi, Il-Dong;Nam, Dae-Geun;Cho, Kyung-mox
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.974-980
    • /
    • 2010
  • Various types of steel, namely, 0.35C, 0.2C-Cr, and 0.2C-Cr-Mo steels, were quenched and tempered by high-frequency induction heat treatment. The type, size, and spheroidization of the carbides varied depending on the tempering temperatures ($450{\sim}720^{\circ}C$). During the tempering process, the carbide was precipitated in the martensite matrix. The 0.35C, 0.2C-Cr, and 0.2C-Cr-Mo steels contained carbides that were smaller than 120 nm. The carbide was spheroidized as the tempering temperature increased. Owing to the fine microstructure and spheroidization of the carbides, all three steels had a high tensile strength as well as yield ratio and reduction of area. In the case of the 0.2C-Cr steel, the use of Cr as an alloying element facilitated the precipitation of alloyed carbides with an extremely small particle and resulted in an increase in the spheroidization rate of the carbides. As a result, a large reduction of area was achieved (>70%). The 0.2C-Cr-Mo steel had the highest tensile strength because of the high hardenability that can be attributed to the presence of alloying elements (Cr and Mo). Quenching and tempering steels by induction heat treatment resulted in a high strength of over 1 GPa and a large reduction of area (>70%) because of the rapid heating and cooling rates.

Study on the Effect of Induction Heating with Alloying Elements for the Pre-Heat Treated Steel of 100kgf/$mm^2$ Tensile Strength (100Kgf/$mm^2$급 선조질강의 합금원소에 따른 유도가열효과에 관한 연구)

  • Park, J.T.;Ahn, S.T.;Kwon, D.H.;Seo, J.H.;Kang, N.H.;Youn, D.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.40-43
    • /
    • 2009
  • This study is for investigating the effect of induction heating with various alloy elements to manufacture the pre-heat treated steels of 100kgf/$mm^2$ for cold heading. For four kinds of steels, the condition of induction heating (especially, induction tempering) were observed, and their microstructure and tensile and compressive properties were investigated. The middle carbon steel and the low carbon Cr-Mo steel are needed the higher Grange-Baughman tempering parameter than that of the low carbon Cr steel to obtain 100kgf/$mm^2$ tensile strength. For accomplishing the pre-heat treated steel of 100kgf/$mm^2$ tensile strength having advanced cold heading. It is needed that the pre-heat treated steel is manufactured by induction quenching and tempering with the low carbon alloy steel to have the high ratio of ferrite and the fine globular cementite simultaneously.

  • PDF

Comparative Study of Aus-Tempering Hardness Prediction by Process Using Machine Learning (기계학습을 활용한 공정 변수별 오스템퍼링 경도 예측 비교 연구)

  • K. Kim;J-. G. Park;U. R. Heo;H. W. Yang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.6
    • /
    • pp.396-401
    • /
    • 2023
  • Aus-tempering heat treatment is suitable for thin and small-sized in precision parts. However, the heat treatment process relies on the experience and skill of the operator, making it challenging to produce precision parts due to the cold forging process. The aims of this study is to explore suitable machine learning models using data from the aus-tempering heat treatment process and analyze the factors that significantly impact the mechanic properties (e.g. hardness). As a result, the study analyzed, from a machine learning perspective, how hardness prediction varies based on the quenching temperature, carbon (C), and copper (Cu) contents.

A study on Mechanical and Fatigue Properties of Spheroidal Graphite Cast Iron (구상흑연주철의 기계적 성질및 피로특성에 관한 연구)

  • Park, No-Gwang;Kim, Chang-Ju;Jun, Eui-Jin
    • 한국기계연구소 소보
    • /
    • s.9
    • /
    • pp.83-93
    • /
    • 1982
  • The influence of different heat treatment conditions on microstructure, mechanical and fatigue properties of Spheroidal Graphite cast Iron with 0.4-0.6% Mn was investigated. 1) Maximum tensile strength was arrived by tempering at about $450^{\circ}C$after quenching. Tempering at higher than $600^{\circ}C$ was changed martensitic structure to ferritic structure and secondary graphites were precipitated. 2) The relationship between matrix hardness and total hardness of the specimens are as following. [HB]$T$=0.7[HB] [HB]$M$+35 Maximum tensile strength was arrived at the total hardness of HB400-450. 3) Endurance ratio decreases with increasing total hardness, and fatigue limits can be presumed from as following. $\sigmaf$=$\sigmat$

  • PDF

Characterization of the complex(B+C+N) Diffusion Layers Formed on Tool Steels (공구강에 형성된 복합(B+C+N) 확산층의 특성 연구)

  • Lee, Jong-Hun;Yu, Wi-Do;Im, Yeong-Mok;Gwon, Gi-Hyeon
    • 연구논문집
    • /
    • s.33
    • /
    • pp.175-182
    • /
    • 2003
  • In this study, the wear resistance of the complex powder diffusion treated KS STD 61 has been investigatived. KS STD 61 tool steel was pretreated in quenching and tempering processes to obtain the tempered martensitic microstructure. The samples were packed with complex powder in steel pot($\Phi$90x60mm) and heated in a box furnace. the complex powder diffusion treatment are carried out at $540^{\circ}C$, $520^{\circ}C$, $500^{\circ}C$ for 40min, 1.5hr and 2.5hr. The microstructure, microhardness, wear resistance, and coating layer thickness of the complex powder diffusion treated samples were investigation. The weight loss of as heat treated sample was 0.4mg and that of the complex powder treated at $540^{\circ}C$ for 2.5hr was 0.17mg. These result means that the wear resistance of tool steels can be easily improved by the powder diffusion process at conventional tempering treatment temperature.

  • PDF

Effect of Heat Treatments on the Microstructures and Mechanical Properties of OCTG (유정용 강관의 미세조직 및 기계적 성질에 미치는 열처리의 영향)

  • Choi, Jong-Min;Noh, Sang-Woo;Yi, Won-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.252-261
    • /
    • 2017
  • This study examined the effect of heat treatment on the microstructure and mechanical properties of J55 line pipe steel. The experiments were carried out at under the following various conditions: austenization temperature($880^{\circ}C$, $910^{\circ}C$, $940^{\circ}C$), cooling methods(water quenching, oil quenching) and tempering temperature(none, $550^{\circ}C$, $650^{\circ}C$). The phase diagram and CCT curve were simulated based on the chemical composition of J55 steel to predict the microstructures. In the results, A1, A3 temperature decreased. As the austenization temperature increased, existing austenite grains grew exponentially which seriously degraded their mechanical properties. Various microstructures, including martensite, bainite, ferrite, and pearlite, developed in accordance with the heat treatments and were closely correlated with hardness, tensile strength and toughness. Martensite was formed after water quenching, but bainite and ferrite appeared after oil quenching. FeC precipitation formed and coarsened during tempering, which improved their toughness.

A Study on Microstructural Characteristics of SUS416 Steel by Controlling Heat Treatment Process (SUS416강의 열처리제어를 통한 미세구조특성에 관한 연구)

  • 김홍건;최창용;김진수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.336-340
    • /
    • 2001
  • Theoretical efforts were taken to investigate an optimum heat treatment process in martensitic stainlesssteel. The approach is based on the combination of the interpolation and extrapolation method of a standard heat treatment technology with the principle of quenching and tempering temperature difference. The relationship of macroscopic structure and fracture toughness and ductility as well as the Hardness and strength has been focused to induce a simple rule to apply with feasibility. As a result it was found that the grain size influences to the fracture toughness and ductility significantly.

  • PDF

The Effect of Hot Stamping Operation Condition on the Mechanical Properties (핫스탬핑 공정조건에 따른 기계적 특성)

  • Kim, H.D.;Moon, M.B.;Lee, S.H.;Yoon, K.W.;Yoo, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.317-320
    • /
    • 2008
  • The Hot Stamping process, which is the hot pressing of steel parts using cold dies. can utilize both case of shaping and high strength due to the hardening effect of rapid quenching during the pressing. We carried out experiments of quenching rate and tempering treatments at temperatures of $200^{\circ}C$ and $300^{\circ}C$ and different soaking times. Tn this study, the mechanical properties and microstructure of micro boron alloyed steels after heat treatments are compared.

  • PDF