• Title/Summary/Keyword: Quenched steel

Search Result 126, Processing Time 0.023 seconds

Weldability of boron containing low carbon quenched and tempered 60kg/mm$^{2}$ steel with low cold cracking susceptibility (저탄소 B 첨가 60kg/mm$^{2}$급 저균열감수성 조질고강력강의 용접성)

  • 장웅성;김태웅;장래웅;엄기원
    • Journal of Welding and Joining
    • /
    • v.7 no.1
    • /
    • pp.59-66
    • /
    • 1989
  • The weldability and joint performance were evaluated for newly developed 60kg/mm$\^$2/ steel which had low cold cracking susceptibility. The main results obtained were as follows; In case of quenched and tempered 60kg/mm$\^$2/ steels, it was very effective to improve weldability and joint performance by lowering carbon and Pcm level. Very small addition of about 0.001 to 0.002wt% boron exhibited an appreciable compensation effect on strength which was decreased by lowering carbon and Pcm level. As a result, the newly developed steel was able to be welded without preheating and exhibited superior joint performance to conventional steels.

  • PDF

Effect of Cr on Mechanical Properties and Microstructure in 0.27% C-1.0% Si-1.5% Mn Steel (0.27% C-1.0% Si-1.5% Mn 강의 미세조직과 기계적성질에 미치는 Cr의 영향)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.4
    • /
    • pp.181-189
    • /
    • 2016
  • The variation in microstructure and mechanical properties during heat treatment was examined in a series of 0.27% C-1.0% Si-1.5% Mn steels with chromium contents in the range of 0 to 1.0 wt%. It was found that chromium decreased the martensite packet size through the austenite grain refinement and increased tensile strength in the as-quenched steel, about 70 MPa per 1.0 wt%. The 0.27% C-1.0% Si-1.5% Mn-1.0% Cr steel showed tensile strength of 1700 MPa in the as-quenched steel. The 0.27% C-1.0% Si-1.5% Mn-1.0% Cr steel revealed a full martensitic structure after air cooling from $900^{\circ}C$ to room temperature, showing air hardening characteristics. Tempering at $150^{\circ}C$ slightly decreased the tensile strength and increased elongation, which is in a good agreement with impact toughness result.

Effect of Quenching Temperature and Cooling Rate on the Mechanical Properties of Direct Quenched Micro-Alloyed Steel for Hot Forging (직접Quenching 열간 단조용 비조질강의 기계적 성질에 미치는 Quenching온도 및 냉각속도의 영향)

  • Shin, Jung-Ho;Ryu, Young-Joo;Kim, Byung-Ok;Ko, In-Yong;Lee, Oh-Yeon
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.513-518
    • /
    • 2012
  • Recently, automobile parts have been required to have high strength and toughness to allow for weight lightening or improved stability. But, traditional micro-alloyed steel cannot be applied in automobile parts. In this study, we considered the influence of quenching temperature and cooling rate for specimens fabricated by vacuum induction furnace. Directly quenched micro-alloyed steel for hot forging can be controlled according to its micro structure and the heat-treatment process. Low carbon steel, as well as alloying elements for improvement of strength and toughness, was used to obtain optimized conditions. After hot forging at $1,200^{\circ}C$, the ideal mechanical properties (tensile strength ${\geq}$ 1,000 MPa, Charpy impact value ${\geq}\;100\;J/cm^2$) can be achieved by using optimized conditions (quenching temperature : 925 to $1,050^{\circ}C$, cooling rate : ${\geq}\;5^{\circ}C/sec$). The difference of impact value according to cooling rate can be influenced by the microstructure. A fine lath martensite micro structure is formed at a cooling rate of over $5^{\circ}C/sec$. On the other hand, the second phase of the M-A constituent microstructure is the cause of crack initiation under the cooling rate of $5^{\circ}C/sec$.

Effect of Vacuum Heat Treatment on Mechanical Properties of Carburized STD61 Steel (침탄된 STD61강의 기계적 성질에 미치는 진공열처리의 영향)

  • Kim, Kyung-Sik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.1
    • /
    • pp.17-20
    • /
    • 2017
  • Mechanical properties of STD61 steel are compared with those of carburized STD61 steel when both are quenched and tempered in vacuum heat treatment. Mechanical properties of carburized STD61 steel are improved better than STD61 steel in hardness, tensile strength, impact energy and wear resistance.

Effect of Si on Mechanical Properties and Microstructure in 0.27% C-1.5% Mn-1.0% Cr Steel (0.27% C-1.5% Mn-1.0% Cr 강의 미세조직과 기계적성질에 미치는 Si의 영향)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.3
    • /
    • pp.117-126
    • /
    • 2017
  • The variation in microstructure and mechanical properties during heat treatment was examined in a series of 0.27% C-1.5% Mn-1.0% Cr steels with silicon contents in the range of 0 to 1.0 wt%. It was found that addition of 0.5%~1.0% silicon increased both tensile strength and impact toughness through solid solution strengthening and microstructural refinement. 0.27% C-1.0% Si-1.5% Mn-1.0% Cr steel showed tensile strength of 1,700 MPa in the as-quenched condition and the steel revealed a full martensitic structure even after air cooling from $900^{\circ}C$ to room temperature, showing air hardening characteristics. Tempering at $150^{\circ}C$ which corresponds to the typical paint-baking temperature after painting of body in white, slightly decreased the tensile strength and increased elongation, but substantially increased the impact toughness compared to the as-quenched steel.

Heat treatment effect on Mechanical property in SM45C (AISI1045) steel (구조용 중탄소강 SM45C의 열처리에 따른 기계적 성질변화)

  • Jun, Sang-Jo;Lee, Im-Kyun;Kim, Song-Hee
    • Journal of Industrial Technology
    • /
    • v.6
    • /
    • pp.33-38
    • /
    • 1986
  • The aim of this study is to find out the relationships between the microstructures of SM45C(AISI1045) steel and fatigue crack propagation behaviour. Three microstructures such as (i) as received (fully annealed). (ii) water quenched and tempered, and (iii) oil quenched and tempered were used for fundamental mechanical testing and fatigue crack proagation test. The microstructures of (ii) and (iii) showed superior in tensile strength to (i). Resistance against fatigue crack propagation was higher in structure (i), while tensile properties were better in structures (ii) and (iii). It is believed due to that the enhancement of roughness of fracture surface obsered in structure (i) increases ${\Delta}Kth$ and lowers fatigue crack growth rate. However it does not necessarily mean the quenched and tempered structures (ii) and (iii) are undesirable for the engineering component because fatigue limit in low cycle test appears usually higher in the microstructures of higher strength.

  • PDF

A Study on the Microstructure of Melt-Quenched AISI 310 Stainless Steel (단롤법으로 제조한 AISI 310 스테인레스강의 급냉 조직에 관한 연구)

  • Choi, J.H.;Oh, M.S.;J., S.S.;Lee, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.1
    • /
    • pp.19-26
    • /
    • 1996
  • Melt-quenching of steels leads to various metallographic effects such as refinement of grain size, extension of the solid solubility of carbon and alloying elements, and is expected to improve the mechanical properties of conventional steels. Furthermore, this technique is a useful method for producing sheet directly from liquid state. And it will lend itself to development as a continuous cast process which offers significant savings in energy and product costs. The purpose of this study is to present the microstructures of melt-quenched austenitic stainless steels. As the results of this study, the morphology of melt-quenched microstructure show that the roll contact area is columnar structure, and the free surface area is dendrite structure. As the line speed increases, the ratio of $d_{colunnar}/d_{total}$ increases from 0.12 to 0.60, but the ribbon thickness decreases from $150{\mu}m$ to $30{\mu}m$.

  • PDF

A Study on Forging Characteristic of Non-Heat Treated Micro-Alloyed Steel Using Finite Element Analysis (유한요소해석을 통한 비조질강 성형 특성 분석)

  • Kwon, Yong-Nam;Kim, S.W.;Lee, Y.S.;Lee, J.H.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.609-614
    • /
    • 2006
  • Micro-alloyed steels(MA steels) for cold forging was developed to replace the usual quenched and tempered steel. MA steels have several advantages over the conventional quenched and tempered carbon steels. First of all, energy consumption could be lowered due to the elimination of spherodizing annealing and quenching/tempering heat treatment. Also, bending during quenching could be avoided when MA steels are applied for manufacturing of long fastener parts. However, larger amount of load is exerted on the dies compared than in the case of conventional mild steels, which might lead to the earlier fracture of dies, when MA forging steels are applied in forging practice. Therefore, die lift could be a critical factor to determine whether HA forging steels could be widely applied in cold forging practice. In the present study, authors have investigated the forging characteristics of non-heat treated micro-alloyed steel by using a series of experimental and numerical analyses. Firstly, microstructural features and its effect on the deformation behavior have been studied. Numerical analysis has been done on the forging of guide rod pin to investigate for the optimization of forging process and die stress prediction.

The Effects of Surface Oxidation Occurring during Delivery from an Annealing Furnace to a Water Bath on the Microstructure and Tensile Properties of TWIP Steel (소둔로에서 수욕으로 이송 중 발생한 표면 산화가 TWIP 강의 미세조직과 인장 성질에 미치는 영향)

  • Oh, Seon-Keun;Lee, Young-Kook
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.2
    • /
    • pp.57-64
    • /
    • 2020
  • In the present study, we investigated whether the surface oxidation of C-bearing TWIP steel ℃curs in the air during specimen delivery from an annealing furnace to a water bath and how the microstructure and tensile properties are influenced by surface oxidation. A cold-rolled Fe-18Mn-0.6 (wt%) steel was exposed in the air for 5 s after annealing at various temperatures (750℃, 850℃ and 1000℃) for 10 min in a vacuum, and then water-quenched. For comparison, another specimen, which had been quartz-sealed in a vacuum, was annealed at 1000℃ for 10 min and immediately water-quenched without exposure to air. The 750℃ and 850℃-annealed specimens and the quartz-sealed specimen showed a γ-austenite single phase in the entire specimen due to negligible surface oxidation. However, the 1000℃-annealed specimen exhibited a dual-phase microstructure consisting of ε-martensite and γ-austenite at the sub-surface due to decarburization. Whereas the specimens without decarburization revealed high elongations of 70-80%, the decarburized specimen exhibited a low elongation of ~40%, indicating premature failure due to cracking inside the decarburized layer with ε-martensite and γ-austenite.

The Change of Mechanical Properties on Weld Heat Input in 60kg/mm2 Quenched and Tempered High Strength Steel (60kg/mm2급 조질고장력강의 용접입열량에 따른 기계적 특성 변화)

  • Kim, O.S.;Park, K.C.;Chung, I.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.1
    • /
    • pp.35-43
    • /
    • 1994
  • For the purpose of studying the change of mechanical properties of weld parts, shielded metal are welding, one-pole and two-pole submerged arc welding were accomplished weldability on $60kg/mm^2$ quenched and tempered high strength steel. Charpy impact values of the weld metal in welded parts by SMAW and SAW were lower than those of the heat affected zone and increased in order of bond, coarsened, refined and carbon spheroidized regions in the heat affected zone. Grain size of prior austenite or M-A constituent did not significantly affect toughness of welded parts, but precipitated carbide films which forms at the grain boundaries or within matrix and volume fraction of pearilte were most important factor for toughness.

  • PDF