• Title/Summary/Keyword: Quench properties

Search Result 62, Processing Time 0.017 seconds

Regarding metallic structure of iron relics of Chosun Dynasty excavated at Gangsun-tower, Chengpyeong Temple (청평사 강선루 출토 조선시대 철제유물의 금속조직에 대하여)

  • Kim, Soo-ki
    • 한국문화재보존과학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.43-54
    • /
    • 2004
  • In the course of examining the metallic structure of Iron chisel and Iron arrowhead, a relics of the 16th or 17th of Chosun Dynasty unearthed at near Gangsun-tower, Chengpyeong temple, we collected un-eroded samples from the relics and looked into the metallic structure through mounting, grinding and polishing, and etching, while analyzing non-metallic inclusion via SEM and EDS. The research metallic structure and SEM-SDS analysis, found that Iron chisel and Iron arrowhead had been produced from sponge iron close to pure Iron made by solid low heat reducing and then increased in rate of carbon by carburizing, It also found that Iron chisel had been hardened through the repetitive process of quench hardening and heat treatment, after being increased in amount of carbon to a certain level. Up to now, there have been a number of studies in the domestic academia which were made primarily of the structure of metallic relics of three countries the period or tile era before that. Although this research was limited in type and number of the relics, it turned out to be Interesting in that it revealed the 16thor 17th century way of processing iron, even in fragments. It is thought to be fruitful that we found iron had been made even in the Chosun Dynasty from sponge iron. It is recommended that researches be made on the relics later to be excavated and originally made in $Kory\breve{o}$ or Chosun Dynasty, because they are important in history of metal technology.

  • PDF

A Study on the Solubility of Nb in Zr-0.8Sn Alloy by Thermoelectric Power Measurement (TEP 측정방법을 이용한 Zr-0.8Sn 합금의 Nb 고용도에 관한 연구)

  • Oh, Yeong-Min;Jeong, Heung-Sik;Jeong, Yong-Hwan;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.11 no.6
    • /
    • pp.453-459
    • /
    • 2001
  • It is important for the fabrication of nuclear cladding to optimize the microstructure, because the properties of Zr-based nuclear claddings such as mechanical properties, oxidation-resistance and corrosion- resistance vary widely with its microstructure. The microstructure in Zr-based alloy is strongly dependent on the solubility of alloying element. However, it is very difficult to measure the solubility due to the low solution limit of alloying elements in Zr-based alloy. In this study, Thermoelectric Power(TEP) measurements are used to determine the solubility of Nb in Zr-0.8Sn alloy, which is confirmed by optical microscopy and transmission electron microscopy. The solutioning of Nb obtained by a homogenization treatment and water-quench leads to a decrease of TEP The saturation of TEP appears with the increase of homogenization temperature, which means the saturation of the Nb content in the matrix. From these results, the solubility ($C_{Nb}$) of Nb in Zr-0.8Sn with temperature could be expressed as fellow equation : $4.69097{\times}10^{16}{\times}e^{-25300\times\;I/T}$(ppm.at.%)

  • PDF