• Title/Summary/Keyword: Quay Crane

Search Result 71, Processing Time 0.026 seconds

Optimization of double cycling in container ports

  • Song, Jang-Ho;Kwak, Kyu-Seok
    • Journal of Navigation and Port Research
    • /
    • v.33 no.2
    • /
    • pp.127-134
    • /
    • 2009
  • If the research on double cycle is revitalized, crane productivity will be rapidly improved bemuse double cycle is an operational technique that can maximize equipments efficiency (Quay crane, RMG/RTG, Yard tractor). Unfortunately, it is very difficult for terminal operators to find out the starting point of double cycle bemuse the loading & unloading pattern and conditions are various. Therefore, terminal operators are apt to fail to find out the optimal starting point of double cycle to maximize its frequency. Experiencing the same mistakes in the process we made efforts to find out the optimal starting point, finally we found out the formula for it. And we verified its precision is perfect through a lot of testing. This paper on double cycling focused on making the formula to find out optimal starting point of double cycle to maximize its frequency. And it can be applied to various ships' stowages in common.

Optimizing Automated Stacking Crane Dispatching Strategy Using an MOEA for an Automated Container Terminal

  • Wu, Jiemin;Choe, Ri;Park, Tae-Jin;Ryu, Kwang-Ryel
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.06a
    • /
    • pp.216-217
    • /
    • 2011
  • The problem of automated stacking cranes (ASC) dispatching in container terminals is addressed in this paper. We propose a heuristic-based ASC dispatching approach which adopts multi-criteria decision strategy. By aggregating different criteria the proposed strategy can consider multiple aspects of the dispatching situation and make robust decision in various situations. A multi-objective evolutionary algorithm (MOEA) is adopted to tune the weights associated to each criteria to minimize both the quay crane delay and external truck delay. The proposed approach is validated by comparison with different dispatching heuristics and simulation results obtained confirms its effectiveness.

  • PDF

Anti-Sway System for Automated Transfer Crane (자동 트랜스퍼 크레인을 위한 컨테이너 흔들림 장치)

  • 박찬훈;박경택;김두형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1743-1746
    • /
    • 2003
  • Automated Container Terminals have been being developed over the world for many recent years and more and more countries get interested in it because the amount of containers exported or imported is steeply increasing. Existed Container Terminals were not designed to control this kind of heavily many containers. They would face many structural problems soon or later, although they have managed to do well until now. One of the most important things in developing Automated Container Terminal is to develop the equipment able to transfer the awfully many containers. Those are maybe Automated Transfer Cranes, Automated Guided Vehicles, and Automated Quay-Side Cranes. The word "Automated" means the equipment is operated without drivers and those equipments are able to work without taking any break. Through the researches on the existed transfer cranes, authors decided that the structure of existed transfer cranes is not proper to swift and fast transfer and it′s not impossible to handle so many containers in limited time. Therefore authors have been studying on the proper structure of the Automated Container Crane for past several years and a new type of transfer crane has been developed. Design concepts and control methods of a new crane will be introduced in this paper.

  • PDF

Efficient Yard Operation for the Dual Cycling in Container Terminal (컨테이너 터미널의 효율적인 듀얼 사이클을 위한 야드 운영)

  • Chung, Chang-Yun;Shin, Jae-Young
    • Journal of Navigation and Port Research
    • /
    • v.35 no.1
    • /
    • pp.71-76
    • /
    • 2011
  • Recently, container terminal managers make an experiment on the double cycle and dual cycle operation, which ship loading and unloading were carried out simultaneously, for increasing the productivity of quay side. If, however, we make an experiment on dual cycle operation in a real job site, the efficiency is poor up to terminal operation method as YTs(Yard Tractors)' allocation method, QCs(Quay Cranes)' working speed, and position of export containers. Especially, using the existing yard operation method, it is difficult to support to dual and double cycle operation. Therefore, this paper examine more efficient terminal operation method, when terminal uses dual cycle operation. We developed a simulation model using simulation analysis software, Arena.

A study on the Quay Capacity at the Container Terminal Using Simulation Model (시뮬레이션 모델을 이용한 컨테이너 터미널 안벽능력 분석)

  • 김창곤;양창호;윤동한;최종희;배종욱
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.05a
    • /
    • pp.43-48
    • /
    • 2001
  • 본 연구에서는 컨테이너 터미널의 적정 안벽능력(Quay Capacity)을 분석하기 위한 시뮬레이션 모델을 구축하였다. 모델에서는 선박의 터미널 도착 특성, 선박별 양하량 및 적하량, 컨테이너 크레인(Container Crane, C/C) 생산성 및 투입대수 등을 입력변수로 입력하였으며, 시뮬레이션 결과로써는 안벽점유율, 선석 점유율, 대기시간 비율, 대기비율, Norm time 초과비율 등을 출력하였다. 이중 컨테이너 터미널의 평가지표로는 Norm time 초과비율, 대기비율 및 안벽점유율을 적용하였다. 컨테이너 터미널을 운영중인 터미널의 터미널 운영실적 자료를 이용하여 모델의 확인 및 검증을 실하였다. 모델은 Knowledge Base에 근거하여 수행되는 G2를 이용하여 구축하였다.

  • PDF

Dispatching Vehicles Considering Multi-lifts of Quay Cranes

  • Nguyen, Vu Duc;Kim, Kap-Hwan
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.2
    • /
    • pp.178-194
    • /
    • 2010
  • To improve the ship operation in automated container terminals, it is important to schedule different types of handling equipment to operate synchronously. For example, a vehicle with container receiving and lifting capabilities is used to transport containers from a storage yard to a vessel and vice versa, while a triple quay crane (QC) can handle up to three 40-ft containers simultaneously. This paper discusses the manner in which vehicles should be assigned to containers to support such multi-lifts of QCs by using information about the locations and times of deliveries. A mixed-integer programming model is introduced to optimally assign delivery tasks to vehicles. This model considers the constraint imposed by the limited buffer space under each QC. A procedure for converting buffer-space constraints into time window constraints and a heuristic algorithmfor overcoming the excessive computational time required for solving the mathematical model are suggested. A numerical experiment is conducted to compare the objective values and computational times of the heuristic algorithm with those of the optimizing method to evaluate the performance of the heuristic algorithm.

Simulation Models for Container Terminal Planning (컨테이너 터미널 중장기계획 수립을 위한 시뮬레이션 모형 개발 -안벽과 장치장 중심-)

  • 남기찬;곽규석;신재영;김우선
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.1
    • /
    • pp.159-171
    • /
    • 1999
  • This Paper aims to develop container terminal simulation models for medium and long term decision makings. It first undertakes in-depth survey of literature. finds its shortcomings and suggests some directions for improvement. It then proposes detailed design for the simulation models. Based on this it finally developes several simulation models and applies them to a hypothetical situation of a container terminal development. The results reveal that basic design questions such as length of quay, number of quay crane, size of storage area are well produced through the models.

  • PDF

Anti-Sway System for Container Transfer Crane for Automated Container Terminal: Part Ⅱ - Model Crane Implementation and Verification (자동화 컨테이너 터미널을 위한 컨테이너 트랜스퍼 크레인의 안티스웨이 시스템: Part Ⅱ-모델 크레인 및 실험 검증)

  • Park ChanHun;Kim DooHyung;Shin YoungJae;Park KyoungTaik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1287-1294
    • /
    • 2004
  • Automated container terminals have been being developed over the world for recent years and many countries are interested in it because the amount of containers exported or imported is rapidly increasing. The conventional container terminals were not designed to control this kind of heavily many containers. They would face many structural problems soon or later, although they have managed to do well so far. One of the most important things in developing automated container terminal is to develop the equipment able to handle many containers efficiently. Those are maybe automated transfer cranes, automatic guided vehicles, and automated quay-side cranes. The word 'automated' means the equipment is operated without drivers and those equipments are able to work without any interruption in working schedule. Through the researches on the conventional transfer cranes, we decided that the structure of the conventional transfer cranes is not efficient in automated container terminal and it's not possible to handle so many containers in limited time. Therefore we have been studying on the proper structure of the automated container crane for past several years and a new type of transfer crane has been developed. Design concept and control method of a new type of transfer crane had been presented in the previous paper: Part Ⅰ. Experimental features will be presented with a model transfer crane in this paper: Part Ⅱ.

Simulation Program for Advanced RMQC (신형 RMQC 시뮬레이션 프로그램)

  • Hwang, Suk-Hwan;Choi, Jae-Seung
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1109-1113
    • /
    • 2004
  • RMQC, rail mounted quay crane, lifts and moves large container by means of hoist and trolley motion on the dock. Our company is trying to develop advanced RMQC applying the concepts of elevator hoist and container conveyer for the automation and high efficiency in handling the boxes. Prior to the development of new products, it is necessary to check the capacity of the new systems using simulation program. The program simulates container-handling rates and gives some design factors for the new-type cranes.

  • PDF

Decision-making Problems for the Operation of Container Terminals (컨테이너터미널 운영을 위한 의사결정문제의 소개)

  • Kim, Kap Hwan
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.3
    • /
    • pp.290-302
    • /
    • 2007
  • This paper introduces several decision-making problems that need to be solved in order to facilitate the efficient operation of container terminals. These decision-making problems include the berth planning problem, the quay crane scheduling problem, the unload/load sequencing problem, the yard allocation problem, and the short-term scheduling of transporters and yard cranes. These problems can be classified into strategic decision problems, tactical decision problems, and real time operational decision problems. This paper proposes definitions of the problems that can be used to develop mathematical models for the problems.