• 제목/요약/키워드: Quasiclassical trajectory method

검색결과 3건 처리시간 0.018초

The Reaction Probability and the Reaction Cross-section of N + O2→ NO + O Reaction Computed by the 6th-order Explicit Symplectic Algorithm

  • He, Jianfeng;Li, Jing
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권12호
    • /
    • pp.1976-1980
    • /
    • 2006
  • We have calculated the reaction probability and the reaction cross-section of the $N(^4S)+O_2(X^3\sum_{g}^{-})\;\rightarrow\;NO(X^2\Pi)+O(^3P)$ reaction by the quasiclassical trajectory method with the 6th-order explicit symplectic algorithm, based on a new ground potential energy surface. The advantage of the 6th-order explicit symplectic algorithm, conserving both the total energy and the total angular momentum of the reaction system during the numerical integration of canonical equations, has firstly analyzed in this work, which make the calculation of the reaction probability more reliable. The variation of the reaction probability with the impact parameter and the influence of the relative translational energy on the reaction cross-section of the reaction have been discussed in detail. And the fact is found by the comparison that the reaction probability and the reaction cross-section of the reaction estimated in this work are more reasonable than the theoretical ones determined by Gilibert et al.

Effects of Reagent Rotation on Stereodynamics Information of the Reaction O(1D)+H2 (v = 0, j = 0-5) → OH+H: A Theoretical Study

  • Kuang, Da;Chen, Tianyun;Zhang, Weiping;Zhao, Ningjiu;Wang, Dongjun
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권10호
    • /
    • pp.2841-2848
    • /
    • 2010
  • Quasiclassical trajectory (QCT) method has been used to investigate stereodynamics information of the reaction $O(^1D)+H_2{\rightarrow}\;OH$+H on the DK (Dobbyn and Knowles) potential energy surface (PES) at a collision energy of 23.06 kcal/mol, with the initial quantum state of reactant $H_2$ being set for v = 0 (vibration quantum number) and j = 0-5 (rotation quantum number). The PDDCSs (polarization dependent differential cross sections) and the distributions of P($\theta_r$), P($\phi_r$), P($\theta_r$, $\phi_r$) have been presented in this work. The results demonstrate that the products are both forward and backward scattered. As j increases, the backward scattering becomes weaker while the forward scattering becomes slightly stronger. The distribution of P($\theta_r$) indicates that the product rotational angular momentum j' tends to align along the direction perpendicular to the reagent relative velocity vector k, but this kind of product alignment is found to be rather insensitive to j. Furthermore, the distribution of P($\phi_r$) indicates that the rotational angular momentum vector of the OH product is preferentially oriented along the positive direction of y-axis, and such product orientation becomes stronger with increasing j.

Theoretical study of the Reactions of $H+H_2$ and Its Isotopic Variants Inter- and Intramolecular Isotope effect

  • 성주범
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권6호
    • /
    • pp.634-641
    • /
    • 1998
  • Quasiclassical trajectory calculations were carried out for the reactions of $H+H_2$ (V=O, J=O) and its isotope variants on the Siegbahn-Liu-Truhlar-Horowitz potential energy surface for the relative energies E between 6 and 150 kcal/mol. The goal of the work was to understand the inter- and intramolecular isotope effects. We examine the relative motion of reactants during the collision using the method of analysis that monitors the intermolecular properties (internuclear distances, geometry of reactants, and final product). As in other works, we find that the heavier the incoming atom is, the greater the reaction cross section is at the same collision energy. Using the method of analysis we prove that the intermolecular isotope effect is contributed mainly by differences in reorientation due to the different reduced masses. We show that above E=30 kcal/mol recrossing also contributes to the intermolecular isotope effect. For the intramolecular isotope effect in the reactions of H+HD and T+HD, we reach the same conclusions as in the systems of $O(^3P)+HD$, F+HD, and Cl+HD. That is, the intramolecular isotope effect below E=150 kcal/mol is contributed by reorientation, recrossing, and knockout type reactions.