• Title/Summary/Keyword: Quasi-static Analysis

검색결과 410건 처리시간 0.122초

삼각망 철근상세를 갖는 새로운 중공 철근콘크리트 교각 (New Hollow RC Bridge Piers with Triangular Reinforcement Details)

  • 김태훈;김호영;이재훈;신현목
    • 한국지진공학회논문집
    • /
    • 제20권1호
    • /
    • pp.21-31
    • /
    • 2016
  • This study investigates the seismic performance of new hollow reinforced concrete (RC) bridge piers with triangular reinforcement details. The developed triangular reinforcement details are economically feasible and rational, and facilitate shorter construction periods. We tested a model of new hollow RC bridge piers with triangular reinforcement details under a constant axial load and a quasi-static, cyclically reversed horizontal load. We used a computer program, Reinforced Concrete Analysis in Higher Evaluation System Technology (RCAHEST), for analysis of RC structures. The used numerical method gives a realistic prediction of seismic performance throughout the loading cycles for several hollow pier specimens investigated. As a result, developed triangular reinforcement details for material quantity reduction was equal to existing reinforcement details in terms of required performance.

Analysis of an electrically actuated fractional model of viscoelastic microbeams

  • Bahraini, Seyed Masoud Sotoodeh;Eghtesad, Mohammad;Farid, Mehrdad;Ghavanloo, Esmaeal
    • Structural Engineering and Mechanics
    • /
    • 제52권5호
    • /
    • pp.937-956
    • /
    • 2014
  • The MEMS structures usually are made from silicon; consideration of the viscoelastic effect in microbeams duo to the phenomena of silicon creep is necessary. Application of the fractional model of microbeams made from viscoelastic materials is studied in this paper. Quasi-static and dynamical responses of an electrically actuated viscoelastic microbeam are investigated. For this purpose, a nonlinear finite element formulation of viscoelastic beams in combination with the fractional derivative constitutive equations is elucidated. The four-parameter fractional derivative model is used to describe the constitutive equations. The electric force acting on the microbeam is introduced and numerical methods for solving the nonlinear algebraic equation of quasi-static response and nonlinear equation of motion of dynamical response are described. The deflected configurations of a microbeam for different purely DC voltages and the tip displacement of the microbeam under a combined DC and AC voltages are presented. The validity of the present analysis is confirmed by comparing the results with those of the corresponding cases available in the literature.

On static stability of electro-magnetically affected smart magneto-electro-elastic nanoplates

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • 제7권1호
    • /
    • pp.63-75
    • /
    • 2019
  • This article represents a quasi-3D theory for the buckling investigation of magneto-electro-elastic functionally graded (MEE-FG) nanoplates. All the effects of shear deformation and thickness stretching are considered within the presented theory. Magneto-electro-elastic material properties are considered to be graded in thickness direction employing power-law distribution. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of such nanoplates. Using Hamilton's principle, the nonlocal governing equations based on quasi-3D plate theory are obtained for the buckling analysis of MEE-FG nanoplates including size effect and they are solved applying analytical solution. It is found that magnetic potential, electric voltage, boundary conditions, nonlocal parameter, power-law index and plate geometrical parameters have significant effects on critical buckling loads of MEE-FG nanoscale plates.

A Study on Moored Floating Body using Non-linear FEM Analysis

  • Ku, Namkug
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제4권1호
    • /
    • pp.25-34
    • /
    • 2018
  • In this study, the behavior of the coupled mooring system and floating body is analyzed. The related works are introduced for the mooring analysis of the floating body. Equations motion are introduced for calculating mooring force connected with the floating body. For formulating the equations of motion, the concept of the constrained force is applied for compact expression of it. The input and output data of the module for calculating mooring force is defined. The static analysis and quasi-static analysis are performed. For the analysis, equilibrium equation for elastic catenary mooring line is used by employing finite element method, and the C# solver is developed in this research. The analysis results are validated by comparing with other research results.

특성 임피던스 정합을 위한 TEM CELL의 최적 구조 설계와 전계 분포 해석에 관한 연구 (A study on design of optimal structure of TEM cell for the characteristic impedance matching and analysis of the electric field distribution)

  • 정성영;이중근
    • 전자공학회논문지A
    • /
    • 제33A권7호
    • /
    • pp.99-110
    • /
    • 1996
  • In this paper, the analysis o fthe electric field distribution for TEM cell which is matched iwth 50 is performed, and the relations of variables for characteristic impedance are derived. Quasi-static approximations are used to calculate the fiedl strength of the internal field of TEM cell. The results of the improved method for analysis of the electric field is compared with that of R.J. Spigel. and the improved method for characteristic impedance and the results of numerical analysis are shown.

  • PDF

Effect of Constitutive Material Models on Seismic Response of Two-Story Reinforced Concrete Frame

  • Alam, Md. Iftekharul;Kim, Doo-Kie
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권2호
    • /
    • pp.101-110
    • /
    • 2012
  • This paper focuses on the finite element (FE) response sensitivity and reliability analyses considering smooth constitutive material models. A reinforced concrete frame is modeled for FE sensitivity analysis followed by direct differentiation method under both static and dynamic load cases. Later, the reliability analysis is performed to predict the seismic behavior of the frame. Displacement sensitivity discontinuities are observed along the pseudo-time axis using non-smooth concrete and reinforcing steel model under quasi-static loading. However, the smooth materials show continuity in response sensitivity at elastic to plastic transition points. The normalized sensitivity results are also used to measure the relative importance of the material parameters on the structural responses. In FE reliability analysis, the influence of smoothness behavior of reinforcing steel is carefully noticed. More efficient and reasonable reliability estimation can be achieved by using smooth material model compare with bilinear material constitutive model.

터널구조물의 내진해석 (Seismic Analysis of Tunnel Structures)

  • 이인모;안대진
    • 한국터널지하공간학회 논문집
    • /
    • 제3권4호
    • /
    • pp.3-15
    • /
    • 2001
  • 일반적으로 지진발생시 터널구조물은 지상구조물에 비해 입는 피해가 매우 작다고 해서 내진설계에 대한 인식이 부족하였다. 그러나, 현재까지 많은 유형의 지하터널이 건설되었고, 앞으로는 더 많은 건설계획이 있으므로 지진시 지하터널구조물에 대한 안정성 확보가 중요하고 많은 연구가 필요하다. 본 논문에서는 지진발생시 터널의 동적거동을 파악하고, 적절한 내진해석을 제안하기 위해서 응답변위법과 동적해석법을 이용하여 내진해석을 실시하였다. 해석 결과는 지진발생시 터널구조물이 지반의 변형에 순응한다는 것을 나타내었고, 응답변위법에 의한 내진해석이 동적해석법에 의한 것보다 대부분의 경우 더 보수적인 해석이라는 것을 보여주었으며, 마지막으로 동적해석시 간편화된 2차원유한요소해석이 복잡한 3차원해석보다 내진해석시 더 효율적이라는 것을 보여주었다. 갱구부의 내진해석결과에서는 지진파가 터널축과 평행하게 진행할 때 갱구부에 설치된 라이닝에 가장 큰 단면력이 발생하는 것으로 나타났다.

  • PDF

Dynamic buckling analysis of a composite stiffened cylindrical shell

  • Patel, S.N.;Bisagni, C.;Datta, P.K.
    • Structural Engineering and Mechanics
    • /
    • 제37권5호
    • /
    • pp.509-527
    • /
    • 2011
  • The paper investigates the dynamic buckling behaviour of a laminated composite stiffened cylindrical shell using the commercial finite element code ABAQUS. The numerical model of the composite shell is validated by static tests. In particular, the experimental collapse test is numerically simulated by a quasi static analysis carried out by both ABAQUS/Standard and ABAQUS/Explicit. The behaviour in the post-buckling field and the collapse load obtained by the analyses are close to the experimental data. The validated model is then used to study the dynamic buckling behaviour with ABAQUS/Explicit. The effects of the loading magnitude and of the loading duration are investigated, implementing in the analysis also first-ply failure criteria. It is observed that the dynamic buckling load is highly affected by the loading duration.

Stress Analysis in the Elastic-Plastic Analysis of Railway Wheels

  • Ashofteh, Roya Sadat;Mohammadnia, Ali
    • International Journal of Railway
    • /
    • 제7권1호
    • /
    • pp.1-7
    • /
    • 2014
  • Fatigue and wear in wheels is often due to the forces and loading. These certainly have fundamental effects on reducing the wheel life and increasing the costs related to repairing and maintenance. Modeling and stress analysis of a wheel sample existing in the Iranian fleet have been performed in its contact with U33 and UIC60 rails. The results have been reviewed and analyzed in elastic and elastic-plastic phase and under static (railcar weight) and quasi static loads. Moreover, effects of wheel diameter, axle load, wheel material, rail type are analyzed.

베어링-축계의 부정정계 해석 및 볼베어링의 거동예측 (Analysis of Statically Indeterminate Bearing-Shaft System and Prediction of the Behavior of Ball Bearing)

  • 김완두;한동철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1993년도 제18회 학술대회 초록집
    • /
    • pp.70-76
    • /
    • 1993
  • From the analysis of shaft-bearing indeterminate system, moment and misalingment angle which was generated in bearing were determined. And the influence of span length between bearings on the fatigue life was established. The equation to estimate the cage rotational speed was proposed, and this equation was verified by the measuring of cage speed and shaft speed. And accoding to quasi-static analysis, the spinning speed of ball was determined.

  • PDF