• Title/Summary/Keyword: Quasi-polygonal ferrite

Search Result 7, Processing Time 0.02 seconds

Effects of Alloy Additions and Annealing Parameters on Microstructure in Cold-Rolled Ultra Low Carbon Steels (극저탄소 냉연강판에서 합금원소 및 어닐링조건이 미세조직에 미치는 영향)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.2
    • /
    • pp.78-86
    • /
    • 2004
  • Effects of the annealing parameters on the formation of ferrites transformed at low temperatures were studied in cold-rolled ultra low carbon steels with niobium and/or chromium. Niobium and chromium were found to be effective in the formation of the low temperature transformation ferrites. The low temperature transformation ferrites more easily formed when both higher annealing temperature and longer annealing time, allowing substitutional alloying elements to distribute between phases, are in combination with faster cooling rate. It was found from EBSD study that the additions of niobium or chromium resulted in the increase in the numbers of high angle grain boundaries and the decrease in those of the low angle grain boundaries in the microstructures. Both granular bainitic ferrite and bainitic ferrite were characterized by the not clearly etched grain boundaries in light microscopy because of the low angle grain boundaries.

A Study of Tailored Blank Welding between Mild Steel and Zn-coated Steel Sheets by $CO_2$ Laser Beam ($CO_2$레이저빔에 의한 저탄소강판과 아연도금강판의 Tailored Blank 용접에 관한 연구)

  • 서종현;김도훈;유병길;이경돈
    • Laser Solutions
    • /
    • v.1 no.1
    • /
    • pp.4-10
    • /
    • 1998
  • A basic research for tailored blank welding between mild steel and Zn-coated steel was carried out with $CO_2$ laser beam. The materials used in this work were low carbon steel sheet with a thickness of 1.2mm and Zn-coated steel sheet with the same thickness and 6.3$\mu$m Zn coating. Experiments were carried out by applying the Taguchi method in order to obtain optimized conditions for the application of tailored blank laser welding method in practical manufacturing process. Optical microscopy, XRD, SEM and TEM analysis were performed to observe microstructures and to determine the solidification mode of welded zone. Also mechanical properties were measured by microhardness test tensile test and Erichsen test in order to evaluate the formability of welded specimen. There was no trapped Zn in the fusion zone, and the phases in this region consisted of polygonal ferrite, quasi-polygonal ferrite, banitic ferrite and martensite. The elongation value of welded specimen was more than 80% of that value in the substrate and LDH value was more than 90% of that value in the substrate metal.

  • PDF

Quasi-Static and Dynamic Torsional Deformation Behavior of API X70 and X80 Linepipe Steels (API X70 및 X80급 라인파이프강의 준정적 및 동적 비틀림 변형 거동)

  • Kim, Yongjin;Kim, Yang Gon;Shin, Sang Yong;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.1
    • /
    • pp.8-18
    • /
    • 2010
  • This study aimed at investigating quasi-static and dynamic torsional deformation behavior of three API X70 and X80 linepipe steels. Quasi-static and dynamic torsional tests were conducted on these steels. having different grain sizes and volume fractions of acicular ferrite and polygonal ferrite, using a torsional Kolsky bar. The test data were then compared via microstructures and adiabatic shear band formation,. The dynamic torsional test results indicated that the steels rolled in the single phase region had higher maximum shear stress than the steel rolled in the two phase region, because the microstructures of the steel rolled in the single phase region were composed mainly of acicular ferrites. In the X80 steel rolled in the single phase region, the increased dynamic torsional properties could be explained by a decrease in the overall effective grain size due to the presence of acicular ferrite having smaller effective grain size. The possibility of adiabatic shear band formation was analyzed from the energy required for void initiation and variation in effective grain size.

A study of Tailored Blank Welding between dissimiliar materials and different thickness sheets by $CO_2$ Laser Beam ($CO_2$ 레이저빔에 의한 이종재질 및 이종두께의 Tailored Blank 용접에 관한 연구)

  • 황창선;김도훈;유병길;이경돈
    • Laser Solutions
    • /
    • v.2 no.3
    • /
    • pp.42-51
    • /
    • 1999
  • This research was conducted as a fundamental study to apply tailored blank welding technique into automotive production process. The materials used in this study were 2.0mm thickness low carbon steel sheets and 1.2mm Zn-coated low carbon steel sheets. To ensure the reproducibility and to consider various factors, experiments were. conducted by applying Taguchi experimental method with 6 factors. Every welding process was repeated 3 times to offset the effect of uncontrolled factors. Elongation and LDH(Limited Dome Height)were measured to evaluate formability of specimens and Optical microscopy, XRD, SEM, and EDS analysis were performed to observe the microstructures and to determine the solidification mode in the weld. The elongation of specimen welded with optimum condition was 83% of base metal, and LDH was 84% of base metal. In case of laser treated specimen where Zn coating was removed, elongation was 85% of base metal, and LDH was 85% of base metal. In fusion zone, phases were consisted of quasi-polygonal ferrite, banitic ferrite, and martensite.

  • PDF

Effect of Rolling Conditions on Microstructure and Mechanical Properties of Thick Steel Plates for Offshore Platforms (해양플랜트용 후판강의 미세조직과 기계적 특성에 미치는 압연 조건의 영향)

  • Kim, Jongchul;Suh, Yonhchan;Hwang, Sungdoo;Shin, Sang Yong
    • Korean Journal of Materials Research
    • /
    • v.28 no.8
    • /
    • pp.478-488
    • /
    • 2018
  • In this study, three kinds of steels are manufactured by varying the rolling conditions, and their microstructures are analyzed. Tensile and Charpy impact tests are performed at room temperature to investigate the correlation between microstructure and mechanical properties. In addition, heat affected zone(HAZ) specimens are fabricated through the simulation of the welding process, and the HAZ microstructure is analyzed. The Charpy impact test of the HAZ specimens is performed at $-40^{\circ}C$ to investigate the low temperature HAZ toughness. The main microstructures of steels are quasi-polygonal ferrite and pearlite with fine grains. Because coarse granular bainite forms with an increasing finish rolling temperature, the strength decreases and elongation increases. In the steel with the lowest reduction ratio, coarse granular bainite forms. In the HAZ specimens, fine acicular ferrites are the main features of the microstructure. The volume fraction of coarse bainitic ferrite and granular bainite increases with an increasing finish rolling temperature. The Charpy impact energy at $-40^{\circ}C$ decreases with an increasing volume fraction of bainitic ferrite and granular bainite. In the HAZ specimen with the lowest reduction ratio, coarse bainitic ferrite and granular bainite forms and the Charpy impact energy at $-40^{\circ}C$ is the lowest.

Continuous Cooling Transformation, Microstructure and Mechanical Properties of High-Strength Low-Alloy Steels Containing B and Cu (B과 Cu가 포함된 고강도 저합금강의 연속냉각 변태와 미세조직 및 기계적 특성)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.525-530
    • /
    • 2013
  • This study investigated the continuous cooling transformation, microstructure, and mechanical properties of highstrength low-alloy steels containing B and Cu. Continuous cooling transformation diagrams under non-deformed and deformed conditions were constructed by means of dilatometry, metallographic methods, and hardness data. Based on the continuous cooling transformation behaviors, six kinds of steel specimens with different B and Cu contents were fabricated by a thermomechanical control process comprising controlled rolling and accelerated cooling. Then, tensile and Charpy impact tests were conducted to examine the correlation of the microstructure with mechanical properties. Deformation in the austenite region promoted the formation of quasi-polygonal ferrite and granular bainite with a significant increase in transformation start temperatures. The mechanical test results indicate that the B-added steel specimens had higher strength and lower upper-shelf energy than the B-free steel specimens without deterioration in low-temperature toughness because their microstructures were mostly composed of lower bainite and lath martensite with a small amount of degenerate upper bainite. On the other hand, the increase of Cu content from 0.5 wt.% to 1.5 wt.% noticeably increased yield and tensile strengths by 100 MPa without loss of ductility, which may be attributed to the enhanced solid solution hardening and precipitation hardening resulting from veryfine Cu precipitates formed during accelerated cooling.

A Study on the Fiber Laser welding of Ultra-Low Carbon Interstitial Free Steel for Automotive (자동차용 무침입형 극저탄소강의 파이버 레이저 용접에 대한 연구)

  • Oh, Yong-Seok;Shin, Ho-Jun;Yang, Yun-Seok;Hwang, Chan-Youn;Yoo, Young-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.342-349
    • /
    • 2011
  • The purpose of this paper is to describe experimental results about the butt welding and bead on plate welding of the high power Continuous Wave (CW) Fiber laser for Ultra-low carbon Interstitial Free(IF) steel plate for gear part of car. After being welded of the gear parts by the fiber laser and electron beam Microstructures of melting zone had been mixed acicular, granular bainitic, quasi-polygonal and widmanstatten ferrite because of a radical thermal diffusion after welding, difference of critical volume and grain size. As a result of experiment, when gear parts were welded by the fiber laser and electron beam, the fiber laser welding has been stable properties without internal defects more than the electron beam welding. Therefore it has the very advantages of welding high quality and productivity more than conventional melting method. The optimal welding processing parameters for gear parts were as follows : the laser power and welding speed were 3kWatt, 30mm/sec respectively. At this time heat input was $21.2{\times}10^3J/cm^2$.