• 제목/요약/키워드: Quasi-Cleavage

검색결과 27건 처리시간 0.023초

수소주입시킨 DP박강판의 SP시험과 수소취성 관계 해석 (Analysis of Correlation between the Hydrogen Embrittlement and the Small Punch Test for Hydrogen-charged Dual Phase Steels)

  • 박재우;강계명
    • 한국가스학회지
    • /
    • 제18권1호
    • /
    • pp.61-67
    • /
    • 2014
  • 고강도 DP강의 수소취성 거동을 소형펀치시험을 통해 평가하였다. 이를 위해 첨가원소가 각기 다른 3종의 DP강 시험편에 전기화학적 방법으로 수소를 강제 주입시켰다. 수소주입 후, 수소주입량을 측정하였다. 수소주입량은 마르텐사이트 부피분율에 크게 의존하는 것으로 조사되었다. 전류밀도 150, $200mA/cm^2$ 조건에서 25시간이 포화상태에 도달하는 수소주입조건으로 나타났다. SP시험 후 SP에너지와 SP bulb 형상을 비교한 결과, 수소주입량의 증가에 따라 SP에너지와 SP bulb 높이가 감소하는 것으로 나타났다. 또한 SP bulb 파단면에서는 뚜렷한 facet와 층상형태의 벽개 파단면이 관찰되어 수소취성화를 관찰할 수 있었다.

AE방법에 의한 Flash Butt 용접부의 파괴거동 평가 (An Evaluation of the Fracture Behavior for Flash Butt Welding zone by Acoustic Emission Method)

  • 김용수;이하성;강동명
    • 한국안전학회지
    • /
    • 제9권1호
    • /
    • pp.9-18
    • /
    • 1994
  • In this study, we conducted experimental tests to evaluate fracture behaviors of fresh-butt welded metal by Acoustic Emission technique. We selected similar welding and dissimilar welding process, the one welded for SM45C, SS41 and SUS304 of each material, the other for SM45C and SS41, SM45C and SUS304 and SS41 and SUS304. The fracturing processes of weld metal were estimatied through the fracture toughness test with compact tension specimens and fractography analysis. In ASTM test method E-399, type I curves for materials of this study were obtained by load-cod diagram of fracture toughness test. and 5% offset load( $P_{5}$) was estimated as the estimated crack initial load( $P_{Q}$), The estimated crack initial load( $P_{Q}$) of similar welding materials generally lower than base matal, and then SM45C appeared greatly in decreasing rate of PB, SS41 and SUS304 appeared in order. $P_{Q}$ of dissimilar welding materials were lower than the similar welding materials. $P_{Q}$ of welding of SM45C and SS41 appeared in small, SUS304 and SS41 appeared greatly in dissimilar welding materials. In fracture toughness test, AE counts increased before the inflection point of the slope, decreased after that. It was found that increasing of AE counts were due to the microcrack formation at the crack tip near the $P_{5}$ point through AE data. For welding materials in this study, both low and high AE amplitude appeared simulataneously. It was confirmed that the low AE amplotude was due to formation of micro void, micro crack or micro dimple, the high AE amplitude was caused by microvoid coalescence and quasi-cleavage fracture through analyses of fractograpy.apy.apy.apy.

  • PDF

Hf가 첨가된 Fe-30at.%A1-5at.%Cr 합금의 미세조직 및 열간압연가공 특성 (Effects of Hf Addition on Microstructure and Hot Workability of Fe-30at.%A1-5at.%Cr Alloy)

  • 윤계림;이도재;백대화;이경구
    • 한국주조공학회지
    • /
    • 제21권6호
    • /
    • pp.336-342
    • /
    • 2001
  • This study was carried out to examine the effects of adding 0.3at.%Hf in Fe-30at.%Al-5at.%Cr alloy on the variation of microstructures and hot workability. The effect of hot rolling on mechanical properties was estimated by measuring the elongation and tensile strength after rolling at 800 and 1000 respectively. Microstructure of Fe-30at.%Al-5at.%Cr alloy was consisted of large equiaxed grains and it was changed to quasi-equiaxed or columnar structures by adding 0.3at.%Hf to Fe-30at.%Al-5at.%Cr alloy. Every specimens showed a decreased tensile strength after hot rolling compared to that of before rolling. The elongation was increased by hot rolling. Remarkable changes in elongation by hot rollong was observed such as from 1.4% to 4.5% elongation at the specimen of 0.3at.%Hf added to Fe-30at.%Al-5at.%Cr. Fe-30at.%Al-5at.%Cr alloy showed typical cleavage fracture on tensile failure and hot rolling has negligible effects on fracture mode in this alloy. However at the alloy containing Hf fracture mode was changed by hot rolling from intergranular to mixed intergranular and transgranular fracture mode.

  • PDF

정전위 SSRT법에 의한 해양구조물용 Cu함유 고장력저합금강의 수소취성한계전위 규명에 관한 연구 (A Study of Hydrogen Embrittlement Limit Potential of Cu-Containing High Strength Low Alloy Steel for Marine Structure by Potentiostatic SSRT Method)

  • 김성종;박태원;심인옥;김종호;김영식;문경만
    • Journal of Welding and Joining
    • /
    • 제19권2호
    • /
    • pp.182-190
    • /
    • 2001
  • A marine structural material was well known to have high tensile strength, good weldability and proper corrosion resistance. Cu-containing high strength low alloy(HSLA) steel was recently developed for their purposes mentioned above. And the steel is free about preheating for welding, therefore it is reported that shipbuilding cost by using it can be saved more or less. However the marine structural materials like Cu-containing HSLA steel are being generally adopted with cathodic protection method in severe corrosive environment like natural sea water but the high strength steel may give rise to Hydrogen Embrittlement due to over protection at high cathodic current density for cathodic protection. In this study Cu-containing HSLA steel using well for marine atructure was investigated about the susceptibility of Hydrogen Embrittlement as functions of tensile strength, strain ratio, fracture time, and fracture mode, etc. and an optimum cathodic protection potential by slow strain rate test(SSRT) method as well as corrosion properties in natural sea water. And its corrosion resistance was superior to SS400 steel, but Hydrogen Embrittlement susceptibility of Cu-containing HSLA steel was higer than that of SS400 steel. However Hydrogen Embrittlement of its steel by SSRT method was showed with pheonomena such as decreasing of fracture time, strain ratio and fracture mode of QC(quasi-cleavage). Eventually it is suggested that an optimum cathodic protection potential not presenting Hydrogen Embrittlement of Cu-containing of HSLA steel by SSRT method was from-770mv(SCE) to - 900mV(SCE)under natural sea water.

  • PDF

열처리에 따른 Fe-6.5Mn-0.08C 중망간강의 미세조직과 기계적 특성 (Effect of Heat Treatment on Microstructure and Mechanical Properties of an Fe-6.5Mn-0.08C Medium-Manganese Steel)

  • 윤영철;이상인;황병철
    • 한국재료학회지
    • /
    • 제30권1호
    • /
    • pp.8-13
    • /
    • 2020
  • Effect of heat treatment on microstructure and mechanical properties of an Fe-6.5Mn-0.08C medium-manganese steel is investigated in this study. Three kinds of medium-manganese steel specimens are fabricated by varying heat treatments of intermediate quenching (IQ), step quenching (SQ), and intercritical annealing (IA). Hardness and tensile tests are performed to examine the correlation of microstructure and mechanical properties for the Fe-6.5Mn-0.08C medium-manganese steel specimens. The IQ and SQ specimens have microstructures of martensite matrix with ferrite, whereas IA specimen exhibits microstructure of acicular ferrite matrix with martensite. The tensile test results show that the SQ specimen with martensite matrix has the highest yield strength and the lowest elongation. On the other hand, the SQ specimen has the highest hardness due to the relatively lower reduction of carbon content in martensite during intercritical annealing. According to the fractography of tensile tested specimens, the SQ specimen exhibits a dimple and quasi-cleavage fracture appearance while the IQ and IA specimens have fully ductile fracture appearance with fine-sized dimples caused by microvoid coalescence at ferrite and martensite interface.

알루미늄 첨가에 따른 오스테나이트계 Fe-23Mn-0.4C 고망간강의 극저온 충격 특성 (Effect of Al Addition on the Cryogenic-Temperature Impact Properties of Austenitic Fe-23Mn-0.4C Steels)

  • 김상규;김재윤;윤태희;황병철
    • 한국재료학회지
    • /
    • 제31권9호
    • /
    • pp.519-524
    • /
    • 2021
  • The impact properties of two austenitic Fe-23Mn-0.4C steels with different Al contents for cryogenic applications are investigated in this study. The 4Al steel consists mostly of austenite single-phase microstructure, while the 5Al steel exhibits a two-phase microstructure of austenite and delta-ferrite with coarse and elongated grains. Charpy impact test results reveal that the 5Al steel with duplex phases of austenite and delta-ferrite exhibits a ductile-to-brittle transition behavior, while the 4Al steel with only single-phase austenite has higher absorbed energy over 100 J at -196 ℃. The SEM fractographs of Charpy impact specimens show that the 4Al steel has a ductile dimple fracture regardless of test temperature, whereas the 5Al steel fractured at -100 ℃ and -196 ℃ exhibits a mixed fracture mode of both ductile and brittle fractures. Additionally, quasi-cleavage fracture caused by crack propagation of delta-ferrite phase is found in some regions of the brittle fracture surface of the 5Al steel. Based on these results, the delta-ferrite phase hardly has a significant effect on absorbed energy at room-temperature, but it significantly deteriorates low-temperature toughness by acting as the main site of the propagation of brittle cracks at cryogenic-temperatures.

2중 용체화처리에 따른 Ti-6AI-4V합금의 미세조직과 인장특성 (Microstructures and Tensile Characteristics of Ti-6AI-4V Alloy by Double Solution Treatment)

  • 최형진;이준희
    • 한국재료학회지
    • /
    • 제4권6호
    • /
    • pp.626-637
    • /
    • 1994
  • Ti-6Ai-4V 합금의 미세조직을 용체화처리온도 및 냉각속도만의 변화로서 Widmanstatten 조직과 이중조직을 얻은 후 이들 미세조직과 인장성질고의 비교. 검토를 통해서 최적 열처리 방안을 설정하고자 하였다. 그 결과 Widmanstatten 조직에 있어서는 열처리온도나 냉각속도에 따라 복잡하고 무질서한 dege형상의 $\alpha$상 및 등축화된 $\alpha$상으로변화시킬 수 있었으며, $\alpha$+$\beta$ 영역에서 2중 용체화 처리의 경우 1차 및 2차 용체화처리 온도가 낮을수록 aspect비는 작아짐을 알 수 있었다. 인장성질에 있어서 Widmanstatten 조직은 이중조직에 비해 강도는 감소하고 연성성질 또한 크게 감소하였으며, 파단양상 Widmanstatten 조직의 경우 준벽개와 dimple형 파단양상이 함께 나타나는 반면 이중조직은 연성파괴를 나타내었다. 또한 이중조직의 파단면을 인장축에 수직인 내부균열영역과 45˚ 정도의 전단각을 갖는 shear lip영역으로 나누어 관찰할 수 있었다.

  • PDF