• 제목/요약/키워드: Quartz Master

검색결과 6건 처리시간 0.021초

재사용 가능한 100nm급 패턴의 퀄츠 마스터 제작 및 퀄츠 마스터를 사용한 사출성형실험 (Fabrication of Nanoscale Reusable Quartz Master for Nano Injection Molding Process)

  • 최두선;이준형;유영은;제태진;황경현;서영호
    • 대한기계학회논문집A
    • /
    • 제29권2호
    • /
    • pp.228-231
    • /
    • 2005
  • In this paper, we present reusable quartz master fabricated by electron-beam lithography and dry etching process of quartz, and results of injection molding based on the reusable quartz master for the manufacturing of nano-scale information media. Since patterned structures of photoresist can be easily damaged by separation (demolding) process of nickel stamper and master, a master with photoresist cannot be reused in stamper fabrication process. In this work, we have made it possible of the repeated use of master by directly patterning on quart in nickel stamper fabrication process. We have designed and fabricated four different specimens including 100nm, 140nm 200nm and 400nm pit patterns. In addition, both intaglio and embossed carving patterns are fabricated for each specimen. In the preliminary test of injection molding, we have fabricated polycarbonate patterns with varying mold temperature. We have experimentally verified the fabrication process of the reusable quart master and possibility of quartz master as direct stamper.

미세패턴 전사기법을 위한 다양한 몰드 제작법 소개 (The Review for Various Mold Fabrication toward Economical Imprint Lithography)

  • 김주희;김연상
    • 한국진공학회지
    • /
    • 제19권2호
    • /
    • pp.96-104
    • /
    • 2010
  • NIL, S-FIL과 같은 각인 기술(Imprinting lithography)를 적용하기 위한 투명하고 단단한 복제 틀(replica hard mold)을 제작하여 고가의 원판(master)와 패턴이 형성되는 기판과의 접촉을 근본적으로 방지해 경제적인 공정이 가능함을 제안한다. 실리콘 웨이퍼(Si wafer)와 같은 원판(master)과 패턴 형성 시 사용되는 기판과 직접적인 접촉을 방지하기 위해 우선 액상 공정을 이용하여 비접착성 표면처리된 고분자 복제(polymer copy)를 매개체(carrier)로 단단한 복제 틀을 제작한다. 이렇게 제작된 단단한 복제 틀(replica hard mold)는 유리와 거의 같은 강도와 투명도를 나타내며, 각인 공정(imprinting process)에서 석영 틀, 실리콘 웨이퍼(quartz mold, Si wafer)과 같이 값비싼 원판(master)의 직접 사용을 대체하여 성공적으로 패턴을 구현할 수 있다.

Thermal embossing 공정을 이용한 PDMS mold 제작에 관한 연구 (A study on PDMS mold fabrication using thermal embossing method)

  • 김동학;유홍진;김창교;장석원;김태완
    • 한국산학기술학회논문지
    • /
    • 제5권3호
    • /
    • pp.223-226
    • /
    • 2004
  • 나노 패턴을 갖는 미세 구조물을 낮은 비용으로 생산하기 위해서는 플라스틱 재료를 이용하는 것이 필수적이고, 대량생산이 가능한 가공방법으로 사출성형 공정기술이 유망하다. 본 연구에서는 e-beam 리소그라피로 제작된 석영원판 내의 100-500nm크기의 선과 점 형상을 간단한 thermal embossing 공정을 이용하여 액상 PDMS를 고형화 시킨 후에 원판과 분리시켜 PDMS 몰드를 제작하였다. 실험결과, 원판에 있는 나노 크기의 다양한 패턴들은 PDMS 몰드에 균일하게 전사되었고, 이 몰드는 사출성형용 스탬퍼 제작에 유용하게 이용될 수 있을 것으로 사료된다.

  • PDF

Monomer based thermally curable resin을 이용한 150nm 급 Soft-Lithography (Sub 150nm Soft-Lithography using the monomer based thermally curable resin)

  • 양기연;홍성훈;이헌
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.676-679
    • /
    • 2005
  • Nano imprint Lithography (NIL) is regarded as one of the next-generation lithography technologies with EUV lithography, immersion lithography, Laser interference lithography. Because a Si wafer stamp and a quartz stamp, used to imprinting usually are very expensive and easily broken, it is suggested that master stamp is duplicated by PDMS and the PDMS stamp uses to imprint .For using the PDMS stamp, a thermally curable monomer resin was used for the imprinting process to lower pressure and temperature. As a result, NIL patterns were successfully fabricated.

  • PDF

Fabrication of Optically Active Nanostructures for Nanoimprinting

  • Jang, Suk-Jin;Cho, Eun-Byurl;Park, Ji-Yun;Yeo, Jong-Souk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.393-393
    • /
    • 2012
  • Optically active nanostructures such as subwavelength moth-eye antireflective structures or surface enhanced Raman spectroscopy (SERS) active structures have been demonstrated to provide the effective suppression of unwanted reflections as in subwavelength structure (SWS) or effective enhancement of selective signals as in SERS. While various nanopatterning techniques such as photolithography, electron-beam lithography, wafer level nanoimprinting lithography, and interference lithography can be employed to fabricate these nanostructures, roll-to-roll (R2R) nanoimprinting is gaining interests due to its low cost, continuous, and scalable process. R2R nanoimprinting requires a master to produce a stamp that can be wrapped around a quartz roller for repeated nanoimprinting process. Among many possibilities, two different types of mask can be employed to fabricate optically active nanostructures. One is self-assembled Au nanoparticles on Si substrate by depositing Au film with sputtering followed by annealing process. The other is monolayer silica particles dissolved in ethanol spread on the wafer by spin-coating method. The process is optimized by considering the density of Au and silica nano particles, depth and shape of the patterns. The depth of the pattern can be controlled with dry etch process using reactive ion etching (RIE) with the mixture of SF6 and CHF3. The resultant nanostructures are characterized for their reflectance using UV-Vis-NIR spectrophotometer (Agilent technology, Cary 5000) and for surface morphology using scanning electron microscope (SEM, JEOL JSM-7100F). Once optimized, these optically active nanostructures can be used to replicate with roll-to-roll process or soft lithography for various applications including displays, solar cells, and biosensors.

  • PDF

나노임프린트 방법을 이용한 폴리머 광도파로 열 격자 (Polymeric Arrayed Waveguide Grating Based on Nanoimprint Technique Using a PDMS Stamp)

  • 임정규;이상신;이기동
    • 한국광학회지
    • /
    • 제17권4호
    • /
    • pp.317-322
    • /
    • 2006
  • 본 논문에서는 폴리머 광도파로 열 격자(arrayed waveguide grating: AWG)를 나노임프린트 방법을 이용하여 제안하고 구현하였다. 빔전파방법을 도입하여 소자를 설계하고 해석하였다. 균일한 접착 및 분리 특성을 갖는 임프린트용 PDMS(polydimethylsiloxane) 스탬프(stamp)를 쿼츠 글래스 물질로 만들어진 마스터 몰드를 이용하여 개발하였다. 이 PDMS 스탬프로 폴리머층을 눌러서 소자 패턴을 형성하고 폴리머를 스핀코팅하여 소자를 완성하였다. 이러한 소자는 식각공정 없이 간단한 스핀코팅과 임프린트 공정만으로 만들어지기 때문에 대량 생산에 적합할 것이다. 제작된 폴리머 AWG 소자의 출력 채널 수는 8개, 채널 간격은 0.8nm, 각 채널의 중심파장은 1543.7nm $\sim$ 1548.3nm 였다. 평균적인 채널 누화와 대역폭은 각각 $\sim$10dB와 0.8nm였다.