• Title/Summary/Keyword: Quantum-well

Search Result 674, Processing Time 0.034 seconds

Analysis of Subwavelength Metal Hole Array Structure for the Enhancement of Quantum Dot Infrared Photodetectors

  • Ha, Jae-Du;Hwang, Jeong-U;Gang, Sang-U;No, Sam-Gyu;Lee, Sang-Jun;Kim, Jong-Su;Krishna, Sanjay;Urbas, Augustine;Ku, Zahyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.334-334
    • /
    • 2013
  • In the past decade, the infrared detectors based on intersubband transition in quantum dots (QDs) have attracted much attention due to lower dark currents and increased lifetimes, which are in turn due a three-dimensional confinement and a reduction of scattering, respectively. In parallel, focal plane array development for infrared imaging has proceeded from the first to third generations (linear arrays, 2D arrays for staring systems, and large format with enhanced capabilities, respectively). For a step further towards the next generation of FPAs, it is envisioned that a two-dimensional metal hole array (2D-MHA) structures will improve the FPA structure by enhancing the coupling to photodetectors via local field engineering, and will enable wavelength filtering. In regard to the improved performance at certain wavelengths, it is worth pointing out the structural difference between previous 2D-MHA integrated front-illuminated single pixel devices and back-illuminated devices. Apart from the pixel linear dimension, it is a distinct difference that there is a metal cladding (composed of a number of metals for ohmic contact and the read-out integrated circuit hybridization) in the FPA between the heavily doped gallium arsenide used as the contact layer and the ROIC; on the contrary, the front-illuminated single pixel device consists of two heavily doped contact layers separated by the QD-absorber on a semi-infinite GaAs substrate. This paper is focused on analyzing the impact of a two dimensional metal hole array structure integrated to the back-illuminated quantum dots-in-a-well (DWELL) infrared photodetectors. The metal hole array consisting of subwavelength-circular holes penetrating gold layer (2DAu-CHA) provides the enhanced responsivity of DWELL infrared photodetector at certain wavelengths. The performance of 2D-Au-CHA is investigated by calculating the absorption of active layer in the DWELL structure using a finite integration technique. Simulation results show the enhanced electric fields (thereby increasing the absorption in the active layer) resulting from a surface plasmon, a guided mode, and Fabry-Perot resonances. Simulation method accomplished in this paper provides a generalized approach to optimize the design of any type of couplers integrated to infrared photodetectors.

  • PDF

Optical Characteristics of Near-monolayer InAs Quantum Dots

  • Kim, Yeong-Ho;Kim, Seong-Jun;No, Sam-Gyu;Park, Dong-U;Kim, Jin-Su;Im, In-Sik;Kim, Jong-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.293-294
    • /
    • 2011
  • It is known that semiconductor quantum-dot (QD) heterostructures have superior zero-dimensional quantum confinement, and they have been successfully applied to semiconductor laser diodes (QDLDs) for optical communication and infrared photodetectors (QDIPs) for thermal images [1]. The self-assembled QDs are normally formed at Stranski-Krastanov (S-K) growth mode utilizing the accumulated strain due to lattice-mismatch existing at heterointerfaces between QDs and cap layers. In order to increase the areal density and the number of stacks of QDs, recently, sub-monolayer (SML)-thick QDs (SQDs) with reduced strain were tried by equivalent thicknesses thinner than a wetting layer (WL) existing in conventional QDs (CQDs) by S-K mode. Despite that it is very different from CQDs with a well-defined WL, the SQD structure has been successfully applied to QDIP[2]. In this study, optical characteristics are investigated by using photoluminescence (PL) spectra taken from self-assembled InAs/GaAs QDs whose coverage are changing from submonolayer to a few monolayers. The QD structures were grown by using molecular beam epitaxy (MBE) on semi-insulating GaAs (100) substrates, and formed at a substrate temperature of 480$^{\circ}C$ followed by covering GaAs cap layer at 590$^{\circ}C$. We prepared six 10-period-stacked QD samples with different InAs coverages and thicknesses of GaAs spacer layers. In the QD coverage below WL thickness (~1.7 ML), the majority of SQDs with no WL coexisted with a small amount of CQDs with a WL, and multi-peak spectra changed to a single peak profile. A transition from SQDs to CQDs was found before and after a WL formation, and the sublevel of SQDs peaking at (1.32${\pm}$0.1) eV was much closer to the GaAs bandedge than that of CQDs (~1.2 eV). These revealed that QDs with no WL could be formed by near-ML coverage in InAs/GaAs system, and single-mode SQDs could be achieved by 1.5 ML just below WL that a strain field was entirely uniform.

  • PDF

Numerical Analysis of NDR characteristics in resonant tunneling diodes with AllnAs/GaInAs Structure (AlIanAs/GaInAS계 공명터널링 다이오드의 부성저항 특성에 관한 수치 해석)

  • Kim, SeongJeen
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.7
    • /
    • pp.51-57
    • /
    • 1995
  • The theoretical analysis for AlInAs/GaInAs resonant tunneling diodes (RTDs), which have shown the improved negative differential resistance (NDR) characteristics, has scarcely been made in comparison with AlGaAS/GaAs RTDs. In this paper, the static current-voltage relation of Al$_{0.48}In_{0.52}As/Ga_{0.47}In_{0.53}$As RTDs were numerically estimated by using a self-consistent method. Assuming a simplified RTD with single quantum well structure and spacer layers, the peak current density (J$_{P}$) and the peak-to-valley current ratio (PVCR) were analysed as the function of the thickness of the well, the barrier and the spacer layer, and temperature. As the results, the peak current density and the peak-to-valley current ratio indicated a reciprocal relation roughly in respect to the thicknesses of the well and the barrier, and it was theoretically predicted that it be not attainable to provide a high peak current desity (J$_{P}$) over 1${\times}10^{5}A/cm^{2}$ as well as the large peak-to-valley current ratio (PVCR) over 10 that were the the critical conditions for the practical use.

  • PDF

Growth Temperature Effects of In0.4Al0.6As Buffer Layer on the Luminescence Properties of InGaAs/InAlAs Quantum Well Structures (InGaAs/InAlAs 양자우물구조의 발광특성에 대한 In0.4Al0.6As 버퍼층 성장온도의 영향)

  • Kim, Hee-Yeon;Ryu, Mee-Yi;Lim, J.Y.;Shin, S.H.;Kim, S.Y.;Song, J.D.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.6
    • /
    • pp.449-455
    • /
    • 2011
  • The luminescence properties of $In_{0.5}Ga_{0.5}As/In_{0.5}Al_{0.5}As$ multiple quantum wells (MQWs) grown on $In_{0.4}Al_{0.6}As$ buffer layer have been investigated by using photoluminescence (PL) and time-resolved PL measurements. A 1-${\mu}m$-thick $In_{0.4}Al_{0.6}As$ buffer layers were deposited at various temperatures from $320^{\circ}C$ to $580^{\circ}C$ on a 500-nm-thick GaAs layer, and then 1-${\mu}m$-thick $In_{0.5}Al_{0.5}As$ layers were deposited at $480^{\circ}C$, followed by the deposition of the InGaAs/InAlAs MQWs. In order to study the effects of $In_{0.4}Al_{0.6}As$ layer on the optical properties of the MQWs, four different temperature sequences are used for the growth of $In_{0.4}Al_{0.6}As$ buffer layer. The MQWs consist of three $In_{0.5}Al_{0.5}As$ wells with different well thicknesses (2.5-nm, 4.0-nm, and 6.0-nm-thick) and 10-nm-thick $In_{0.5}Al_{0.5}As$ barriers. The PL peaks from 4-nm QW and 6-nm QW were observed. However, for the MQWs on the $In_{0.4}Al_{0.6}As$ layer grown by using the largest growth temperature variation (320-$580^{\circ}C$), the PL spectrum only showed a PL peak from 6-nm QW. The carrier decay times in the 4-nm QW and 6-nm QW were measured from the emission wavelength dependence of PL decay. These results indicated that the growth temperatures of $In_{0.4}Al_{0.6}As$ layer affect the optical properties of the MQWs.

$1{times}8$ Array of GaAs/AlGaAs quantum well infrared photodetector with 7.8$\mu\textrm{m}$ peak response ($1{times}8$ 배열, 7.8 $\mu\textrm{m}$ 최대반응 GaAs/AlGaAs 양자우물 적외선 검출기)

  • 박은영;최정우;노삼규;최우석;박승한;조태희;홍성철;오병성;이승주
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.6
    • /
    • pp.428-432
    • /
    • 1998
  • We fabricated 1$\times$8 array of GaAs/AlGaAs quantum well infrared photodetectors for the long wavelength infrared detection which is based on the bound-continuum intersubband transition, and characterized its electrical and optical properties. The device was grown on SI-GaAs(100) by the molecular beam epitaxy and consisted of 25 period of 40 ${\AA} $ GaAs well and 500 ${\AA} $ $Al_{0.28} Ga_{0.72}$ As barrier. To reduce the possibility of interface states only the center 20 ${\AA} $ of the well was doped with Si ($N_D=2{\times}10^{18} cm^{-3}$). We etched the sample to make square mesas of 200$\times$200 $\mu\textrm{m}^2$ and made an ohmic contact on each pixel with Au/Ge. Current-voltage characteristics and photoresponse spectrum of each detector reveal that the array was highly uniform and stable. The spectral responsivity and the detectivity $D^*$ were measured to be 180,260 V/W and $4.9{\times}10^9cm\sqrt{Hz}/W$ respectively at the peak wavelength of $\lambda$ =7.8 $\mu\textrm{m}$ and at T=10 K.

  • PDF

Characterization of InAs Quantum Dots in InGaAsP Quantum Well Grown by MOCVD for 1.55 ${\mu}m$

  • Choe, Jang-Hui;Han, Won-Seok;Song, Jeong-Ho;Lee, Dong-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.134-135
    • /
    • 2011
  • 양자점은 전자와 양공을 3차원으로 속박 시키므로 기존의 bulk나 양자우물보다 양자점을 이용한 레이저 다이오드의 경우 낮은 문턱 전류, 높은 미분이득 및 온도 안전성의 장점이 있을 거라 기대되고 있다. 그러나, 양자점은 낮은 areal coverage 때문에 높은 속박효율을 얻지 못하고 있다. 이러한 양자점의 문제점을 해결하기 위해 양자점을 양자우물 안에 성장시켜 운반자들의 포획을 향상시키는 방법들이 연구되고 있다. 양자우물 안에 양자점을 넣으면 양자우물이 운반자들의 포획을 증가 시키고, 열적 방출도 억제하여 온도 안정성이 향상 되는 것으로 알려져 있다. 광통신 대역의 1.3 ${\mu}m$ 경우, GaAs계를 이용하여 InAs 양자점을 strained InGaAs 박막을 우물층으로 한 dot-in-a-well 구조의 연구는 몇몇 보고된 바 있다. 그러나 InP계를 사용하는 1.55 ${\mu}m$ 대역에서 dot-in-a-well구조의 연구는 아직 미미하다. 본 연구에서는 유기 금속 화학 증착법(metal organic chemical vapor deposition)을 이용하여 InP 기판 위에 InAs 양자점을 자발성장법으로 성장하였으며 dot-in-a-well 구조에서 우물층으로 1.35 ${\mu}m$ 파장의 $In_{0.69}Ga_{0.31}As_{0.67}P_{0.33}$ (1.35Q)를, 장벽층으로는 1.1 ${\mu}m$ 파장의 $In_{0.85}Ga_{0.15}As_{0.32}P_{0.68}$(1.1Q)를 사용하였다. 양자우물층과 장벽층은 모두 InP 기판과 격자가 일치하는 조건으로 성장하였다. III족 원료로는 trimethylindium (TMI)와 trimethylgalium (TMGa)을 사용하였으며 V족 원료 가스로는 $PH_3$ 100%, $AsH_3$ 100%를, carrier gas로는 $H_2$를 사용하였다. InP buffer층의 성장 온도는 640$^{\circ}C$이며 양자점 성장 온도는 520$^{\circ}C$이다. 양자점 형성은 원자력간 현미경(Atomic force microscopy)를 이용하여 확인하였으며, 박막의 결정성은 쌍결정 회절분석(Double crystal x-ray deffractometry)를 이용하여 확인하였다. 확인된 성장 조건을 이용하여 양자점 시료를 성장하였으며 광여기분광법(Photoluminescence)을 이용하여 광특성을 분석하였다. Fig. 1은 dot in a barrier 와 dot-in-a-well 시료의 성장구조이다. Fig. 1(a)는 일반적인 dot-in-a-barrier 구조로 InP buffer층을 성장하고 1.1Q를 100 nm 성장한 후 양자점을 성장하였다. 그 후 1.1Q 100 nm와 InP 100 nm로 capping하였다. Fig. 1(b)는 dot-in-a-well 구조로 InP buffer층을 성장하고 1.1Q를 100 nm 성장 후 1.35Q 우물층을 4 nm 성장하였다. 그 위에 InAs 양자점을 성장하였다. 그 후에 1.35Q 우물층을 4 nm 성장하고 1.1Q 100 nm와 InP 100 nm로 capping하였다. Fig. 2는 dot-in-a-barrier 시료와 dot-in-a-well 시료의 상온 PL data이다. Dot-in-a-barrier 시료의 PL 파장은 1544 nm이며 반치폭은 79.70 meV이다. Dot-in-a-well 시료의 파장은 1546 nm이며 반치폭은 70.80 meV이다. 두 시료의 PL 파장 변화는 없으며, 반치폭은 dot-in-a-well 시료가 8.9 meV 감소하였다. Dot-in-a-well 시료의 PL peak 강도는 57% 증가하였으며 적분강도(integration intensity)는 45%가 증가하였다. PL 데이터에서 높은 에너지의 반치폭 변화는 없으며 낮은 에너지의 반치폭은 8 meV 감소하였다. 적분강도 증가에서 dot-in-a-well 구조가 dot-in-a-barrier 구조보다 전자-양공의 재결합이 증가한다는 것을 알 수 있으며, 반치폭 변화로부터 특히 높은 에너지를 갖는 작은 양자점에서의 재결합이 증가 된 것을 알 수 있다. 이는 양자우물이 장벽보다 전자-양공의 구속력을 증가시키기 때문에 양자점에 전자와 양공의 공급을 증가시키기 때문이다. 따라서 낮은 에너지를 가지는 양자점을 모두 채우고 높은 에너지를 가지는 양자점까지 채우게 되므로, 높은 에너지를 가지는 양자점에서의 전자-양공 재결합이 증가되었기 때문이다. 뿐만 아니라 파장 변화 없이 PL peak 강도와 적분강도가 증가하고 낮은 에너지 쪽의 반치폭이 감소한 것으로부터 에너지가 낮은 양자점보다는 에너지가 높은 양자점에서의 전자-양공 재결합율이 급증하였음을 알 수 있다. 우리는 이와 같은 연구에서 InP계를 이용해 1.55 ${\mu}m$에서도 dot in a well구조를 성장 하여 더 좋은 특성을 낼 수 있으며 앞으로 많은 연구가 필요할 것이라 생각한다.

  • PDF

Priority Management Using the QGIS for Sources of Contaminated Soil in Gyeonggi-do Province (QGIS를 이용한 경기도내 토양오염원의 중점관리 지점 선정)

  • Son, Yeong-Geum;Kim, Ji-Young;Park, Jin-Ho;Im, Heung-Bin;Kim, Jong-Su
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.1
    • /
    • pp.88-95
    • /
    • 2020
  • Object: The purpose of this study was to select priority points for soil management using the location of groundwater and to suggest this method for soil contamination surveys. Method: Groundwater impact range was set to an area of 100 to 500 meters from the center point of agricultural groundwater wells. Data on industrial complex and factory areas, areas of stored or used ores and scrap metals, areas associated with waste and recycling, and traffic-related facilities areas were collected and checked for whether they fall within the groundwater impact range. Longitude and latitude coordinates of these data were mapped on the groundwater impact range using QGIS (Quantum Geographic Information System). Results: Considering the groundwater impact range, the points were selected as follows: 589 points were selected from 6,811 factories and 259 points were selected from 1,511 recycling business points. Traffic-related facility areas were divided between gas stations, bus depots, and auto mechanics. Thirty-four points were selected from 149 bus depots and 573 points were selected from 6,013 auto mechanic points. From the 2,409 gas station points, 323 were selected. Conclusion: Contaminated soil influences groundwater and crops, which can harm human health. However, soil pollution is not easily identified, so it is difficult to determine what has occurred. Pollution must be prevented beforehand and contaminated soil found. By selecting and investigating soil contamination survey points in consideration of the location of groundwater wells, we can safely manage water resources by preventing groundwater contamination in advance.

An Analysis of Light Induced Degradation with Optical Source Properties in Boron-Doped P-Type Cz-Si Solar Cells (광원의 특성에 따른 Boron-doped p-type Cz-Si 태양전지의 광열화 현상 분석)

  • Kim, Soo Min;Bae, Soohyun;Kim, Young Do;Park, Sungeun;Kang, Yoonmook;Lee, Haeseok;Kim, Donghwan
    • Korean Journal of Materials Research
    • /
    • v.24 no.6
    • /
    • pp.305-309
    • /
    • 2014
  • When sunlight irradiates a boron-doped p-type solar cell, the formation of BsO2i decreases the power-conversion efficiency in a phenomenon named light-induced degradation (LID). In this study, we used boron-doped p-type Cz-Si solar cells to monitor this degradation process in relation to irradiation wavelength, intensity and duration of the light source, and investigated the reliability of the LID effects, as well. When halogen light irradiated a substrate, the LID rate increased more rapidly than for irradiation with xenon light. For different intensities of halogen light (e.g., 1 SUN and 0.1 SUN), a lower-limit value of LID showed a similar trend in each case; however, the rate reached at the intensity of 0.1 SUN was three times slower than that at 1 SUN. Open-circuit voltage increased with increasing duration of irradiation because the defect-formation rate of LID was slow. Therefore, we suppose that sufficient time is needed to increase LID defects. After a recovery process to restore the initial value, the lower-limit open-circuit voltage exhibited during the re-degradation process showed a trend similar to that in the first degradation process. We suggest that the proportion of the LID in boron-doped p-type Cz-Si solar cells has high correlation with the normalized defect concentrations (NDC) of BsO2i. This can be calculated using the extracted minority-carrier diffusion-length with internal quantum efficiency (IQE) analysis.

Simulation and Experimental Studies of Real-Time Motion Compensation Using an Articulated Robotic Manipulator System

  • Lee, Minsik;Cho, Min-Seok;Lee, Hoyeon;Chung, Hyekyun;Cho, Byungchul
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.171-180
    • /
    • 2017
  • The purpose of this study is to install a system that compensated for the respiration motion using an articulated robotic manipulator couch which enables a wide range of motions that a Stewart platform cannot provide and to evaluate the performance of various prediction algorithms including proposed algorithm. For that purpose, we built a miniature couch tracking system comprising an articulated robotic manipulator, 3D optical tracking system, a phantom that mimicked respiratory motion, and control software. We performed simulations and experiments using respiratory data of 12 patients to investigate the feasibility of the system and various prediction algorithms, namely linear extrapolation (LE) and double exponential smoothing (ES2) with averaging methods. We confirmed that prediction algorithms worked well during simulation and experiment, with the ES2-averaging algorithm showing the best results. The simulation study showed 43% average and 49% maximum improvement ratios with the ES2-averaging algorithm, and the experimental study with the $QUASAR^{TM}$ phantom showed 51% average and 56% maximum improvement ratios with this algorithm. Our results suggest that the articulated robotic manipulator couch system with the ES2-averaging prediction algorithm can be widely used in the field of radiation therapy, providing a highly efficient and utilizable technology that can enhance the therapeutic effect and improve safety through a noninvasive approach.

High Performance $2{\times}4$ S-SEED Array with Extremely Shallow Quantum Well and Asymmetric Fabry-Peort Cavity Structure (저장벽 양자우물고조와 비대칠 패브리-페로 공명기 구조에 의한 고성능 $2{\times}4$ S-SEED Array 구현)

  • 권오균;최영완;김광준;이일항;이상훈;원용협;유형모
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.144-151
    • /
    • 1994
  • We designed and fabricated a $2{\times}4$ symmetric self electro-optic effect device array using GaAs/ AIo.04 G$\DeltaR$), and optical bistability loop width ($\Delta$). The average values of the elements of the $2{\times}4$ S-SEED array were CR~13.1, R~24%, and $\Delta$~91%. It was found that the AFP cavity structure enhances the self-biased optical bistability in ESQW-SEED under no external bias. That is due to the decreased intrisic region thickness in AFP-SEED structures, and which increases the built-in electric fields. The zero-biased S-SEED showed CR of ~4.7, R~9%, and $\Delta$~22%.X>~22%.

  • PDF